Computer Technology and Programming-II)

Computer Technology and
Programming-1I)

Class -XII

BOARD OF SECONDARY EDUCATION
RAJASTHAN, AJMER

Textbook Development Committ

Computer Technology and Programming-II)

Class -XII

HR Choudhary

Assistant Professor, Government Engineering College

Ajmer, Rajasthan
Authors:
Vishnu Prakash Sharma Anil Kumar Tailor
Assistant Professor Assistant Professor
Government Engineering College Government Engineering College

Ajmer, Rajasthan Ajmer, Rajasthan

SYLLABUS DEVELOPMENT COMMITTEE
Class - XII

Computer Technology and Programming-1I)

Convenor - Dr. Vishnu Goel, Director
Centre for E-Governance,
Govt. Khetan Polytechnic College, Jaipur

Members - 1. Dr. Anil Gupta, Assistant Professor
Computer Science and Electronics Department
MBM Engineering College, Jodhpur

2. Mr. Harji Ram Choudhary, Assistant Professor
Govt. Engineering College, Ajmer

3. Mr. Dalpat Singh Songara, Assistant Professor
Govt. Girls Engineering College, Ajmer

4. Mr. Amarjeet Punia, Assistant Professor
Govt. Girls Engineering College, Ajmer

5. Mr. Vishnu Prakash Sharma, Assistant Professor
Govt. Engineering College, Ajmer

6. Mr. Rajesh Kumar Tiwari, Principal
Govt. Senior Secondary School, Jotaya, Sarwar (Ajmer)

Preface

This book covers essential concepts of Computer Technology and
Programming. The overall aim of the book is to introduce about Data
Structure, C++, DBMS and their applications.

The topics covered in this book are according to the recently revised syllabus
of Board of Secondary Education, Rajasthan. This book comprises of 15
chapters and each chapter has its own significance.

Chapters 1 to 5, are part of first unit and cover introduction to data structure
which include arrays, sorting, stacks, queues and linked lists.

Chapter 6 to 12, are part of second unit and cover introduction to C++
programming language which include simple C++ programmes & their
process of linking and compling, operators, expressions, control structures,
functions in C++, classes, objects, constructors, destructors, operator
overloading and inheritance.

Chapter 13 to 15, are part of third unit and discuss about introduction to DBMS
which include DBMS concepts, Relational database concepts and Basics of
PL/SQL.

We take this opportunity to extend our heartfelt thanks to everyone who
supported us in this endeavour. Our thanks to the people who helped in data
collection, organisation of topics, editing and reviewing of contents and much
more. Last but not least , we extend our thanks to our family members without
whose support this dream could not have been converted intoa REALITY.

Suggestions for improvement in the book are welcome.

Authors

Index

Chapter No. Title Page No.
Chapter 1 Introduction to Data Structures 1-4
Chapter 2 Array 5-31
Chapter 3 Sorting 32-53
Chapter 4 Stack 54-65
Chapter 5 Linked List 66-73
Chapter 6 Beginning with C4++ 76-85
Chapter 7 Operators. Expressions and Control Structures 86-93
Chapter 8 Functions in C++ 04-98
Chapter 9 Classes and Objects 99-112
Chapter 10 Constructors and Destructors 113-123
Chapter 11 Operator Overloading 124-131
Chapter 12 Inheritance 132-148
Chapter 13 DBMS concepts 149-173
Chapter 14 SQL 176-217
Chapter 15 PL/SQL 218-233

Chapter1

Introduction to Data Structures

Data Structure is a way of collecting and organising data in such a way that we can perform
operations on these data in an effective way. Data Structures is about rendering data elements
in terms of some relationship, for better organization and storage.Data structure is a logical
and mathematical view of any organisations data. For example, we have data player's name
"Virat" and age 26. Here "Virat" is of String data type and 26 is of integer data type. We can
organize this data as a record like Player record. Now we can collect and store player's
records in a file or database as a data structure. For example: "Dhoni" 30, "Gambhir" 31,
"Sehwag" 33

Classification of Data Structures:

[DaTA sTRUCTURES |

| Simple Data Structures | | Compound Data Structures |

. | I
| Array | | Struc:ture] Limear Mon-Linear

| Stack | | Qu.eue | |L|nked List | l_Tr:|

Simple Data Structures:

These are normally built from primitive data types like integers, real, character, Boolean etc.
There are following two types of simple data structures

1. Array

2. Structure

Compound Data Structures:
Simple data structures can be combined in various ways to form more complex structures
called compound data structures.

They are classified into the following two types:

1. Linear data structures

These data structures are single level data structures. A data structure is said to be linear if its
elements form a sequence. There are the following types:

a. Stack

b. Queue

c. Linked List

2. Non-linear data structures
These are multilevel data structures. Examples of non-linear data structure are Tree

(1

and Graph.

Operations on Data Structures: The basic operations that are performed on data structures
are as follows:

Insertion: Insertion means addition of a new data element in a data structure.

Deletion: Deletion means removal of a data element from a data structure ifit is found.
Searching: Searching involves searching for the specified data element in a data structure.
Traversal: Traversal of a data structure means processing all the data elements present in it.
Sorting: Arranging data elements of a data structure in a specified order is called sorting.
Merging: Combining elements of two similar data structures to form a new data structure of
the same type, is called merging.

Algorithm:An algorithm is a finite set of instructions or logic, written in order, to
accomplish a certain predefined task. Algorithm is not the complete code or program, it is just
the core logic (solution) of a problem, which can be expressed either as an informal high level
description as pseudocode or using a flowchart.

An algorithm is said to be efficient and fast, if it takes less time to execute and consumes less
memory space. The performance of an algorithm is measured on the basis of following
properties:

Space Complexity

Time Complexity

Space Complexity

It's the amount of memory space required by the algorithm, during the course of its
execution. Space complexity must be taken seriously for multi-user systems and in situations
where limited memory is available. An algorithm generally requires space for following
components:

Instruction Space: It's the space required to store the executable version of the program. This
space is fixed, but varies depending upon the number of lines of code in
the program.

Data Space: It's the space required to store all the constants and variables value.

Time Complexity
Time Complexity is a way to represent the amount of time needed by the program to run to
completion.

Time Complexity of Algorithms:

Time complexity of an algorithm signifies the total time required by the program to run to
completion. The time complexity of algorithms is most commonly expressed using the big O
notation.

Time Complexity is most commonly estimated by counting the number of elementary
functions performed by the algorithm. And since the algorithm's performance may vary with
different types of input data, hence for an algorithm we usually use the worst-case time
complexity of an algorithm because that is the maximum time taken for any input size.

2

Important Points
e Datastructureis alogical and mathematical view of any organisations data.

e Simple data structures can be combined in various ways to form more
complex structures called compound data structures.

e An algorithm is a finite set of instructions or logic, written in order, to
accomplish a certain predefined task.

e Space complexity is the amount of memory space required by the algorithm,
during the course of'its execution. Space complexity must be taken seriously
for multi-user systems and in situations where limited memory is available.

Exercise

Objective type questions.
Q1.When determining the efficiency of algorithm, the space factor is measured by
a. Counting the maximum memory needed by the algorithm
b. Counting the minimum memory needed by the algorithm
c. Counting the average memory needed by the algorithm
d. Counting the maximum disk space needed by the algorithm

Q2. For an algorithm the complexity of the average case is
a. Much more complicated to analyze than that of worst case
b. Much more simpler to analyze than that of worst case
c. Sometimes more complicated and some other times simpler than that of
worst case
d. None or above

Q3. When determining the efficiency of algorithm the time factor is measured by
a. Counting microseconds
b. Counting the number of key operations
c. Counting the number of statements
d. Counting the kilobytes of algorithm

Q4. Which of the following data structure is linear data structure?

a. Trees b. Graphs

c. Arrays d. None of above
Q5. Which of the following data structure is non linear data structure?

a. Arrays b. Linked lists

c. Both of above d. None of above

Short answer type questions.

Q1. What is Data Structure ?

Q2. What are the two main measures for the efficiency of an algorithm ?
Q3. Why time complexity is important ?

Q4. Give example of Linear data structure.

3)

Essay type questions.

Q1. How Space Complexity can be calculated ?
Q2. What are the uses of data structure?

Q3. Explain compound data structures ?

Answers
Ansl.a Ans2.c
Ans4.c Ans4.d

“4)

Ans3.b

Chapter 2

ARRAY
Definition of Array- An array is defined as finite ordered collection of homogenous data
elements which are stored in contiguous memory locations.

Here the words,
finite means data range must be defined.
ordered means data must be stored in continuous memory addresses.
homogenous means data must be of similar data type.

There are two types of Array:
1. Single or One Dimensional Array
2. Multi Dimensional Array

Single or One Dimensional array: A list of items can be given one variable name using only
one subscript and such a variable is called single sub-scripted variable or one or Single

dimensional array.

First Element Last Element

l !

Numbers[0] | Numbers[1] | Numbers[2] | Numbers[3] | -—

Declaration of One Dimensional array: Like any other variable, arrays must be declared
before they are used so that the compiler can allocate space for them in the memory. The
syntax form of array declaration is:

type variable-name([size];

Ex-

float height[50];

int group[10];

charname[10];
The type specifies the type of the element that will be contained in the array, such as int, float,
or char etc. Variable-name specifies the name of array such as height, group and name. The
size indicates the maximum number of elements that can be stored inside the array. C
programming language also treats character strings simply as arrays of characters.

Now declare an array for five elements
intnumber[5];

Then the computer reserves five storage locations as the size of the array as shown below —

)

Reserved Space Storing Values after

Initailization
HWum ber[0] 35 Mum ber[a]
Mum ber[1] 20 Mum ber[l]
Mumber[2] 40 Mum ber[2]
Number[3] 5? Num ber|3]
Mum ber[4] 19 Mumber4]

Initialization of Single or One Dimentional Array: After an array is declared, it's elements
must be initialized. In C programming an array can be initialized at either of the following
stages:

- Atcompile time

- Atruntime

Compile Time initialization: Array can be initialized when it is declared. The general form
of'initialization of array is:
type array-name[size] = {listof values };

The values in the list are separated by commas. For example
intnumber[3]={0,5,4 };

The above statement will declare the variable “number”as an array of size 3 and will assign
the values to each element. If the number of values in the list are less than the number of
elements, then only that many elements will be initialized. The remaining elements values
will be setto zero automatically.

Remember, if we have more initializers than the declared size, the compiler will produce an
error.

Run time Initialization: An array can also be explicitly initialized at run time. For example
consider the following segment of a C program.
for(i=0;i<10;i++)
{
scanf(" %d ", &x[i]);

}
Above example will initialize array elements with the values entered through the keyboard.
In the run time initialization of the arrays, looping statements are almost compulsory.
Looping statements are used to initialize the values of the arrays one by one by using
assignment operator or through the keyboard by the user.

Sample One Dimensional Array Program:

/* Simple C program to store the elements in the array and to print them from the
array */

(6)

#include<stdio.h>
#include<conio.h>
void main()

{
intarray[5],i;
printf("Enter 5 numbers to store them in array \n");

for(i=0;i<5;i++)

scanf("%d",&array[i]);

printf("Element in the array are - \n \n");
for(i=0;1<5;i++)

{
printf("Element stored ata[%d] = %d \n",i,array[i]);

getch();

}
Input— Enter 5 numbers to store them inarray —23 45 32 25 45

Output— Element in the array are —
Element stored ata[0]-23
Element stored ata[1]-45
Element stored ata[2]-32
Element stored ata[3]-25
Element stored ata[4]-45

Multi Dimensional Array:

Array of an array known as multidimensional array. The general form of a multidimensional
array declaration —

type name[sizel |[size2]...[sizeN];
The simplest form of multidimensional array is the two-dimensional array. Example
intx[3][4];

Here, x is a two-dimensional (2d) array and can hold 12 elements. You can think the array as
table with 3 row and each row has 4 column.

(7

Column Column |Column Column
1 2 3 4

Row 1 | x[e][e] | x[@][1] | x[@][2] | x[@][3]

ROW 2| x[1](e] | x[1][2] | x[2][2] | x[1][3]

ROW 3| x[2][e] | x[2][1] | =x[2][2] | x[2][3]

Initialization of Two Dimensional(2D)Array: Like the one dimensional array, 2D arrays
canbe initialized in two ways; the compile time initialization and the run time initialization.

Compile Time initialization — We can initialize the elements of the 2D array in the same
way as the ordinary variables are declared. The best form to initialize 2D array is by using the
matrix form. Syntax isasbelow—

inttable[2][3]={
{0,2,5}

{1,3,0}

}5

Run Time initialization — As in the initialization of 1D array we used the looping statements
to set the values of the array one by one. In the similar way 2D array are initialized by using
the looping structure. To initialize the 2D array by this way, the nested loop structure will be
used; outer for loop for the rows (first sub-script) and the inner for loop for the columns

(second sub-script) of the 2D array. Below is the looping section to initialize the 2D array by
using the run time initialization method —

for(i=0;i<3;i++)
for(j=0;j<3:j++)
{

scanf("%d",&arl[i][j]);

}
}

Sample 2D array Program:
/* Sample 2-D array C program */

#include<stdio.h>

#include<conio.h>
void main()

®)

¥
Output—
1 2
4 5
7 8

Address Calculation in Single (One) Dimentional Array:

intarray[3][3].1,j,count=0;

/* Run time Initialization */
for(i=1;i<=3;i++)

{
for(j=1;j<=3;j++)
count++;
array[i][j]=count;
printf("%d\t",array[i][j]);
printf("\n");
}
getch();
3
6
9

Actual Address of the 1=
element of the array is known as

Base Address (B)
Here it is 1100

!

Memory space acquired by every
element in the Array is called
Width (W)

Here it is 4 bytes

——

Actual Address
B tha Bia 1100 | 1104 1108 | 1112 1116 1120
Elements 15 11 | 44 | 93 | 20
Address with respect to
the Array (Subscript) 0 2 3 . 5

1

Lower Limit/Bound
of Subscript (LB)

©)

Array of an element of an array say “A[1]”is calculated using the following formula:

Addressof A[1]=B+W*(I-LB)

Where,

B=Baseaddress

W =Storage Size of one element stored in the array (in byte)

I=Subscript of element whose address is to be calculate

LB =Lower limit/ Lower Bound of subscript, if not specified assume 0 (zero)

Example:
Given the base address of an array B[1300.....1900] as 1020 and size of each element is 2
bytes in the memory. Find the address of B[1700].

Solution:

The given values are: B=1020,LB=1300, W=2,1=1700
Addressof A[T]=B+W*(I-LB)
=1020+2*(1700—-1300)

=1020+2*400

=1020+800

=1820[Ans]

Address Calculation in Multi (Two) Dimensional Array:

While storing the elements of a 2-D array in memory, these allocations are contiguous
memory locations. Therefore, a 2-D array must be linearized their storage. There are two
alternatives to achieve linearization: Row-Major and Column-Major.

Calumn Index

A
r Al
0 1 2 3
o| 8 6 5 4
S 2 1 9 7
&
2| 3 6 4 2

Two-Dimensional Array

Row-Major (Row Wise Arrangement)

Row 0 Row 1 Row 2

Column-Major [Column Wise Arrangement)

(10)

Address of an element of any array say “A[I][J]” can be calculated by two types as given
below:

(a) Row Major System

(b) Column Major System

Row Major System:
The address of a location in Row Major System is calculated using the following formula:
Addressof A[1][J]=B+W*[N*(I-Lr)+(J-Lc)]

Column Major System:
The address of a location in Column Major System is calculated using the following formula:
Address of A[1][J] Column Major Wise=B+W *[(I-Lr)+M* (J—Lc)]

Where,

B=Baseaddress

I=Row subscript of element whose address is to be calculate

J=Column subscript of element whose address is to be calculate

W = Storage Size of one element stored in the array (in byte)

Lr=Lower limit of row/start row index of matrix, ifnot given assume 0 (zero)
Lc=Lower limit of column/start column index of matrix, if not given assume 0 (zero)
M =Number of row of the given matrix

N=Number of column of the given matrix

Note: Usually number of rows and columns of a matrix are given (like A[20][30] or
A[40][60]) but if it is given as A[Lr- ————Ur, Le- ———— Uc]. In this case number of rows
and columns are calculated using the following methods:

Number of rows (M) will be calculated as=(Ur—Lr) + 1

Number of columns (N) will be calculated as=(Uc—Lc)+ 1

And rest of the process will remain same as per requirement (Row Major Wise or Column
Major Wise).

Examples:

An array X [-15.......... 10, 15........o..l. 40] requires one byte of storage. If beginning
location is 1500 determine the location of X [15][20].

Solution:

As you see here the number of rows and columns are not given in the question. So they are
calculated as:

Number orrows say M=(Ur—Lr)+1=[10—(-15)]+1=26

Number or columns say N=(Uc—Lc)+1=[40—-15)]+1=26

(1) Column Major Wise Calculation of above equation

The given values are: B=1500, W=1byte,[=15,]=20,Lr=-15,Lc=15,M=26

Addressof A[T][J]=B+W*[(I-Lr)+M*(J-Lc)]
=1500+1* [(15—(-15)) +26 * (20— 15)] = 1500+ 1 * [30 + 26 * 5] = 1500 + 1 * [160]

(11)

=1660[Ans]
(i) Row Major Wise Calculation of above equation
The given values are: B=1500, W=1byte,[=15,]=20,Lr=-15,Lc=15,N=26

Addressof A[I][J]=B+W*[N*(I-Lr)+(J—Lc)]

=1500+1*[26* (15—(-15)))+(20—15)]=1500+1 *[26 * 30+ 5]=1500+1 *[780+ 5] =
1500 +785

=2285[Ans]

Basic Operations on Array: Follwing operations can be performed on array
(a) Traverse —access all the array elements one by one.
(b) Insertion —Adds an element at the given index.
(c) Deletion—Deletes an element at the given index.
(d) Search— Searches an element using the given index or by the value.
(e) Update —Updates an element at the given index.

Traverse: Traversing means accessing the each and every element of array exactly once.
Following is the algorithm for traversing a linear array

Here A is a linear array with lower bound LB and upper bound UB. This algorithm traverses
array A and applies the operation PROCESS to each element of the array.
1. RepeatForI=LBto UB
2. Apply PROCESStoA[l]
[End of For Loop]
3. Exit

Insertion: Insert operation is to insert one or more data elements into an array. Based on the
requirement, a new element can be added at the beginning, end, or any given index of array.
Following is the algorithm for Insertion an element in to a linear array.

Algorithm: Let LAbe a Linear Array (unordered) with N elements and K is a positive integer
such that K<=N. Following is the algorithm where ITEM is inserted into the Kth position of
LA-

1. Start
2.Set]J=N
3.SetN=N+1

4. Repeat steps 5 and 6 while] >=K
5.SetLA[J+1]1=LA[J]
6.SetJ=]J-1

7.SetLA[K]=ITEM

8. Stop

C Program for Insertion:
#include <stdio.h>

main() {

(12)

int LA[]={1,3,5,7,8};
intitem=10,k=3,n=35;
inti=0,j=n;

printf("The original array elements are :\n");

for(i=0; i<n; i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H

n=n+1;

while(j>=k) {
LA[j+11=LA[j;
}j:j-l;

LA[k]=item;
printf("The array elements after insertion :\n");

for(i=0;i<n;i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
b
}

When we compile and execute the above program, it produces the following result—

The original array elements are :
LA[0]=1

The array elements after insertion :
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=10

LA[4]=7

LA[5]=8

Deletion: Deletion refers to removing an existing element from the array and re-organizing
all elements of an array. Following is the algorithm for Deletion an element from a linear

array.

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

(13)

Following is the algorithm to delete an element available at the Kth position of LA.
1. Start

2.SetJ=K

3. Repeat steps 4 and 5 while J<N

4.SetLA[J-1]=LA[J]

5.SetJ=J+1
6.SetN=N-1
7. Stop

C Program for Deletion:
#include <stdio.h>

main() {
int LA[]={1,3,5,7,8};
intk=3,n=5;
inti, j;

printf("The original array elements are :\n");

for(i=0; i<n;i++) {
printf("LA[%d]=%d\n", i, LA[i]);

§

=k

while(j<n) {
LAJ[j-1]=LA[j];
i=ith

}

n=n-1;

printf("The array elements after deletion :\n");

for(i=0;i<n;i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H
}

When we compile and execute the above program, it produces the following result —
Output

The original array elements are :
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after deletion :

(14)

Search: Searching refers the finding out an element using the given index or by the value.
There are two types of searching in linear array

1.Linear Search

2.Binary Search

Linear Search:

A linear search is the basic and simple search algorithm. A linear search searches an element
or value from an array till the desired element or value is not found. It searches in a sequence
order. It compares the element with all the other elements given in the list and if the element is
matched it returns the value index else it return - 1. Linear Search is applied on the unsorted or
unordered list when there are fewer elements in a list.

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to find an element with a value of ITEM using sequential search

1. Start

2.SetJ=0

3.Repeat steps 4 and 5 while J<N

4.IF LA[J]isequal ITEM THEN GOTO STEP 6

5.SetJ=J+1

6.PRINTJ,ITEM

7. Stop

C Program for Searching:

#include <stdio.h>

Void main() {
intLA[]={1,3,5,7,8};
intitem=5,n=5;
inti=0,j=0;

printf("The original array elements are :\n");

for(i=0;i<n;i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H

while(j<n){
if(LA[j]==item) {
break;
}

J=ith
}

(15)

printf("Found element %d at position %d\n", item, j+1);

}

When we compile and execute the above program, it produces the following result—
Output

The original array elements are:
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

Found element 5 at position 3

Binary Search:

Binary Search is applied on the sorted array or list. In binary search, we first compare the
value with the elements in the middle position of the array. If the value is matched, then we
return the value. If the value is less than the middle element, then it must lie in the lower half
of'the array and ifit's greater than the element then it must lie in the upper half of the array. We
repeat this procedure on the lower (or upper) half of the array. Binary Search is useful when
there are large numbers of elements in an array.

We basically ignore half of the elements just after one comparison.

Compare x with the middle element.

Ifx matches with middle element, we return the mid index.

Else If x is greater than the mid element, then x can only lie in right half subarray after the
mid element. So we recur for right half.

Else (x is smaller) recur for the left half.

C Prgram for Binary Search:
#include <stdio.h>
#include<conio.h>

#define MAX 20

// array of items on which linear search will be conducted.
intintArray[MAX]= {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66} ;

void printline(int count) {
inti;

for(i=0;i<count-1;i++) {
printf("=");
H

printf("=\n");
H

(16)

int find(int data) {
int lowerBound =0;
intupperBound=MAX-1;
intmidPoint=-1;
int comparisons =0;
intindex=-1;

while(lowerBound <=upperBound) {
printf("Comparison %d\n" , (comparisons +1));
printf("lowerBound : %d, intArray[%d] = %d\n",lowerBound,lowerBound,
intArray[lowerBound]);
printf("upperBound : %d, intArray[%d] = %d\n" ,upperBound,upperBound,
intArray[upperBound]);
comparisons++;

// compute the mid point
//midPoint = (lowerBound +upperBound)/ 2;
midPoint=lowerBound + (upperBound - lowerBound) / 2;

// data found
if(intArray[midPoint] == data) {
index =midPoint;
break;
telse {
//if data is larger
if(intArray[midPoint] < data) {
// datais inupper half
lowerBound =midPoint+ 1;

// datais smaller
else {
// datais in lower half
upperBound =midPoint-1;
!
}

printf("Total comparisons made: %d" , comparisons);
return index;

}

void display() {
inti;
printf("[");
//navigate through all items
for(i=0;i<MAX;i++) {
printf("%d ", intArray[i]);
}

(17

printf("J\n");

main() {
printf("Input Array: ");
display();
printline(50);

//find location of 1
int location=find(55);

// if element was found
if(location !=-1)
printf("nElement found at location: %d" ,(location+1));
else
printf("nElement not found.");
}

If we compile and run the above program then it would produce following result —
Output

InputArray:[123467911121415161719333443455566]

Comparison 1

lowerBound : 0, intArray[0] =1
upperBound : 19, intArray[19]=66
Comparison 2

lowerBound : 10, intArray[10]=15
upperBound : 19, intArray[19]=66
Comparison 3

lowerBound : 15, intArray[15]=34
upperBound : 19, intArray[19]=66
Comparison 4

lowerBound : 18, intArray[18]=55
upperBound : 19, intArray[19]=66
Total comparisons made: 4
Element found at location: 19

Update: Update operation refers to updating an existing element from the array at given
index.

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to update an element available at the Kth position of LA.

1. Start

2.SetLA[K-1]=ITEM

3. Stop

C Program for Updation:

(18)

#include <stdio.h>

#include<conio.h>

main() {
intLA[]={1,3,5,7,8};
intk=3,n=5,item=10;
inti,j;

printf("The original array elements are :\n");

for(i=0; i<n; i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H

LA[k-1]=item;
printf("The array elements after updation :\n");

for(i=0; i<n; i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H
}

When we compile and execute the above program, it produces the following result—
Output

The original array elements are :
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after updation :
LA[0]=1

LA[1]=3

LA[2]=10

LA[3]=7

LA[4]=8

Character String in C: Strings are actually one-dimensional array of characters terminated
by anull character "\0'. Thus a null-terminated string contains the characters that comprise the
string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To
hold the null character at the end of the array, the size of the character array containing the

string is one more than the number of characters in the word "Hello."

char greeting[6]= {'H','e","l','l",'0',"\0'};

(19)

Ifyou follow the rule of array initialization then you can write the above statement as follows

char greeting[]="Hello";

Following is the memory presentation of the above defined string in C/C++—

Index o | 2 3 4 5
Variable H e | | o \O
Address 023451 | 023452 | momess | oaase | oxzzass | oxessss

Actually, you do not place the null character at the end of a string constant. The C compiler
automatically places the "\0' at the end of the string when it initializes the array. Let us try to
print the above mentioned string —

#include <stdio.h>
intmain () {

char greeting[6]= {'H','e","l','",'0',"\0'};
printf("Greeting message: %s\n", greeting);
return 0;
}
When the above code is compiled and executed, it produces the following result —
Greeting message: Hello
C supports a wide range of functions that manipulate null-terminated strings —

S.N. [Function Purpose

1 strepy(sl, s2); | Copies string s2 into string s1.

2 streat(s1, s2); | Concatenates string s2 onto the end of string s1.

3 stien(s1); Returns the length of string s1.

4 stemp(s1, s2);[Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.
5 strchr(sl, ch); | Returns a pointer to the first occurrence of character ch in string sl.

6 strstr(sl, s2); | Returns a pointer to the first occurrence of string s2 in string sl.

The following example uses some of the above-mentioned functions —
#include <stdio.h>

#include<conio.h>

#include <string.h>

intmain () {

(20)

charstr1[12]="Hello";
char str2[12]="World";
charstr3[12];

int len;

/* copy strl into str3 */
strepy(str3, strl);
printf("strepy(str3, strl) : %s\n", str3);

/* concatenates strl and str2 */
strcat(strl, str2);
printf("strcat(strl, str2): %s\n", strl);

/* total length of str1 after concatenation */
len=strlen(strl);
printf("strlen(strl): %d\n",len);

return 0;

}

When the above code is compiled and executed, it produces the following result —
strepy(str3, strl) : Hello

strcat(strl, str2): HelloWorld

strlen(strl): 10

Static and Dynamic Memory Allocation:Dynamic memory allocation is at runtime. Static
memory allocation is before run time, but the values of variables may be change at run time.

Static memory allocation saves running time, but can't be possible in all cases.
Dynamic memory allocation stores it's memory on heap, and the static memory allocation
stores it's data in the “data segment” of the memory.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

//static allocation example using integer array.

int arr[5]; /* static memory allocation memory allocated before execution, the size of array
should be initialized*/

for (intj=0;j<5;j++)//Waste of memory can be occured.

printf("Enter number for Static Array %d: " j);
scanf("%d", &arr[j]);

}
printf("nThe Static Array is: \n");
for (intj=0;j<S5;j++)

{
printf("The value of %d is %d\n", j, arr[j]);

21

}

//dynamic allocation example using integer array
int* array;
intn, 1;
printf("n \n\nDynamic Allocation\n");
printf("Enter the number of elements: ");
scanf("%d", &n);
array = (int*) malloc(n*sizeof(int)); //memory is allocated during the execution of the
program
//Less Memory space required.
for (i=0; i<n; i++) {
printf("Enter number %d: ", 1);
scanf("%d", &array[i]);

}

printf("\nThe Dynamic Array is: \n");

for (1i=0; i<n; i++) {
printf("The value of %d is %d\n", i, array[i]);

}
printf("Size=%d\n", 1);

system("PAUSE");
return 0;

}

Memory Allocation Functions:
Programming language provides several functions for memory allocation and management.
These functions can be found in the <stdlib.h>header file.

S.No. |Function & Description

1 void *calloc(int num, int size);

This function allocates an array of num elements each of which size in
bytes .

2 void free(void *address);

This function releases a block of memory specified by address.

3 void *malloc(int num);

This function allocates an array of num bytes and leave them
uninitialized.

4 void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize.

(22)

Following are examples of dynamic memory allocation using functions:
1.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

charname[100];
char *description;

strcpy(name, "Zara Ali");

/* allocate memory dynamically */
description=malloc(200 * sizeof(char));

if(description==NULL) {
fprintf(stderr, "Error - unable to allocate required memory\n");

}

else {
strepy(description, "Zaraali a DPS student in class 10th");

}

printf("Name = %s'\n", name);
printf("Description: %s\n", description);

}

When the above code is compiled and executed, it produces the following result.

Name=ZaraAli
Description: Zara alia DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace malloc with
calloc as follows —

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating memory,
unlike arrays where once the size defined, you cannot change it.

2.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

intmain() {

charname[100];

(23)

char *description;
strecpy(name, "Angad");

/* allocate memory dynamically */
description=malloc(30 * sizeof(char));

if(description==NULL) {
fprintf(stderr, "Error - unable to allocate required memory\n");

}

else {
strepy(description, "Angad is a cute Boy.");

}

/* suppose you want to store bigger description */
description =realloc(description, 100 * sizeof(char));

if(description==NULL) {
fprintf(stderr, "Error - unable to allocate required memory\n");

}

else {
strcat(description, "He is in 1" Class");

}

printf("Name = %s\n", name);
printf("Description: %s\n", description);

/* release memory using free() function */
free(description);

}

When the above code is compiled and executed, it produces the following result.

Name=Angad
Description: Angad is a cute Boy.He isin 1" Class.

Pointers in 'C': A pointer is a variable whose value is the address of another variable, i.e.,
direct address of the memory location. Like any variable or constant, you must declare a
pointer before using it to store any variable address. The general form of a pointer variable

declarationis —
type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of
the pointer variable. The asterisk * used to declare a pointer is the same asterisk used for

multiplication. Take a look at

int *ip; /*pointerto aninteger */
double *dp; /* pointer to a double */

24)

some of the valid pointer declarations —

float *fp; /* pointertoafloat*/
char *ch /*pointerto acharacter */

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address. The
only difference between pointers of different data types is the data type of the variable or
constant that the pointer points to.

The following example shows use of pointer variable —

#include <stdio.h>

intmain () {

int var=20; /*actual variable declaration */
int *ip; /* pointer variable declaration */

ip=&var; /* store address of var in pointer variable*/
printf(" Address of var variable: %x\n", &var);

/* address stored in pointer variable */
printf(" Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */
printf("Value of *ip variable: %d\n", *ip);

return 0;

}

When the above code is compiled and executed, it produces the following result —

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do not
have an exact address to be assigned. This is done at the time of variable declaration. A
pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries.
Consider the following program —

#include <stdio.h>

intmain () {

(25)

int *ptr=NULL,;
printf("The value of ptris : %ox\n", ptr);

return 0;

}

When the above code is compiled and executed, it produces the following result —
The value of ptris 0
To check for anull pointer, you can use an 'if' statement as follows —

if(ptr) /* succeedsifpisnotnull */
if(Iptr) /*succeedsifpisnull */

How does recursion work?

void recurse() :

{ recursive
s ww waa call
recurse(); ——

}

int main()

{
recurse();

}

Recursion in 'C': Recursion is the process of repeating items in a self-similar way. In
programming languages, if a program allows you to call a function inside the same function,
thenitis called a recursive call of the function. Or in orher words when a function is calling to
itselfis known as recursive function.

Recursion works as follows:
void recurse()

{
recurse();

int main()

{

(26)

recurse();

Conditions for recursive function:

1.Every function must have a Base Criteria (Termination condition) and for that it should
not call to itself.

2. Whenever a function is calling to itself it must be closer to the Base Criteria.

Following are some examples of recursions-
(a) Fibonacci Series

(b) Binomial coefficient

(¢)GCD

(a) Fibonacci Series

Fibonacci series are the numbers in the following integer sequence
0,1,1,2,3,5,8,13,21,34,55,89....

the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent term is the
sum of the previous two terms. In mathematical terms, the Nth term of Fibonacci numbers is
defined by the recurrence relation:

fibonacci(N) =Nth term in fibonacci series
fibonacci(N) = fibonacci(N - 1)+ fibonacci(N - 2);
whereas, fibonacci(0) =0 and fibonacci(1)=1

Below program uses recursion to calculate Nth fibonacci number. To calculate Nth fibonacci
number it first calculate (N-1)th and (N-2)th fibonacci number and then add both to get Nth
fibonacci number.

For Example : fibonacci(4)=fibonacci(3) + fibonacci(2);

C program to print fibonacci series till Nth term using recursion

In below program, we first takes the number of terms of fibonacci series as input from user
using scanf function. We are using a user defined recursive function named 'fibonacci' which
takes an integer(N) as input and returns the Nth fibonacci number using recursion as
discussed above. The recursion will terminate when number of terms are less then 2 because
we know the first two terms of fibonacci series are 0 and 1.

#include <stdio.h>
#include <conio.h>

int fibonacci(int term);
intmain(){
int terms, counter;
printf("Enter number of terms in Fibonacci series: ");
scanf("%d", &terms);
/ &
Nth term= (N-1)th therm + (N-2)th term;

27

*/
printf("Fibonacci series till %d terms\n", terms);
for(counter =0; counter < terms; counter++) {
printf("%d", fibonacci(counter));
H
geteh();
return 0;
}
/ %
Function to calculate Nth Fibonacci number
fibonacci(N) =fibonacci(N - 1)+ fibonacci(N - 2);
*/
int fibonacci(int term){
/* Exit condition of recursion™®/
if(term <2)
return term;
return fibonacci(term - 1)+ fibonacci(term - 2);

}

Program Output

Enter number of terms in Fibonacci series: 9
Fibonacci series till 9 terms
01123581321

(b) Binomial Coefficient Program:
#include<stdio.h>

int fact(int);

void main()

{

intn,r,f;

printf("enter value forn & r\n");
scanf("%d%d",&n,&r);

if(n<r)

printf("invalid input");

else f=fact(n)/(fact(n-r)*fact(r));
printf("binomial coefficient=%d",f);

}

int fact(int x)

{

if(x>1)

return x*fact(x-1);
elsereturn 1;

J
(¢) GCD of Two numbers:
Input first number: 10

(28)

Input second number: 15
Output GCD: 5

Logic to find GCD using recursion

factorsof 2- €@ @ €© () @ (12
factors of 30- o o e o (10) (15) (30)

Common faf-!tm ﬂf 12 and 30

Euclidean algorithm to tind GCD:
Begin:
function ged(a, b)
If (b=0) then
returna
Endif
Else
return ged(b, amod b);
Endif
End function
End

Program to find GCD using recursion:

/**

* C program to find GCD (HCF) of two numbers using recursion
*/

#include <stdio.h>

/* Function declaration */
int gcd(inta, intb);

int main()

{
intnuml, num2, hef;
/* Reads two numbers from user */
printf("Enter any two numbers to find GCD: ");
scanf("%d%d", &num1, &num?2);

hef=ged(numl, num?2);

(29)

printf("GCD of %d and %d =%d\n", num1, num2, hcf);

return 0;

}

/ ok

* Recursive approach of euclidean algorithm to find GCD of two numbers
*/

intged(inta, intb)

if(b==0)
returna;

else
return gcd(b, a%b);

Output:

Enter any two numbers to find GCD: 12
30

GCDof12and30=6

Important Points

e Anarray is defined as finite ordered collection of homogenous data elements
which are stored in contiguous memory locations.

e While storing the elements of a 2-D array in memory, these are allocated
contiguous memory locations.

e Traversing means accessing the each and every element of array exactly
once.

e Apointerisavariable whose value is the address of another variable.

Exercise
Objective type questions.
Q1. In linear search algorithm worst case occurs when
a. The item is somewhere in the middle of the array
b. The item is not in the array at all
c. The item is the last element in the array
d. The item is the last element in the array or is not there at all
Q2. The complexity of linear search algorithm is
a. O(n) b. O(logn)
c. O(n2) d. O(nlogn)
Q3. Average case occur in linear search algorithm
a. When item is somewhere in the middle of the array
b. When item is not in the array at all

(30)

c. When item is the last element in the array
d. When item is the last element in the array or is not there at all
Q4. Finding the location of the element with a given value is:

a. Traversal b. Search
c. Sort d. None of above
Q5. Which of the following case does not exist in complexity theory
a. Bestcase b. Worst case
c. Average case d. Null case

Short answer type questions.
Q1. What is the time complexity of binary search ?
Q2. What do you mean by Array ?
Q3. What is string ?
Q4. What do you mean by pointer ?
Q5. What is dynamic memory allocation ?

Essay type questions.

Q1. Explain two Dimentional array with example ?
Q2. Explain Malloc function in detail ?

Q3. Which data structure is used to perform recursion ?
Q4. Why binary search is better then linear search ?
Q5. Explain character string ?

Answers
Ansl.d Ans2.d
Ans4.b Ans4d.d

€2))

Ans3.a

Chapter 3
Sorting:

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to

arrange data in a particular order. Most common orders are in numerical or lexicographical
order. The importance of sorting lies in the fact that data searching can be optimized to a very
high level, if data is stored in a sorted manner. Sorting is also used to represent data in more
readable formats. Following are some of the examples of sorting in real-life scenarios —

Telephone Directory — The telephone directory stores the telephone numbers of people
sorted by their names, so that the names can be searched easily.

Dictionary — The dictionary stores words in an alphabetical order so that searching of
any word becomes easy.

In-place Sorting and Not-in-place Sorting:

Sorting algorithms may require some extra space for comparison and temporary storage
of few data elements. In-place sorting algorithms do not require any extra space and
sorting is said to happen in-place within the array itself. Bubble sort is an example of in-
place sorting.

However, in some sorting algorithms, the program requires space which is more than or
equal to the elements being sorted. Sorting which uses equal or more space is called not-
in-place sorting. Merge-sort is an example of not-in-place sorting.

Stable and Unstable Sorting:
If a sorting algorithm, after sorting the contents, does not change the sequence of similar
content in which they appear, it is called stable sorting.

a 1 2 i] u] T i g

35 |33 |42 (10 || 14 (19 |[26 || 44 (| 26 | 31

10 |14 |19 || 26 || 28 || 31 || 33 || 35 | 42 || 44

o 1 2] 4 5 6 7 a]
If a sorting algorithm, after sorting the contents, changes the sequence of similar content
in which they appear, it is called unstable sorting.

1 2 3 4 5 & T [g

35 || 33 42 || 10 14 19 26 | 44 || 26]|

10 || 14 19 || 28 26 | N 33 || 35 || 42 || 44

(32)

Stability of an algorithm matters when we wish to maintain the sequence of original
elements, like in a tuple for example.

Adaptive and Non-Adaptive Sorting Algorithm:

A sorting algorithm is said to be adaptive, if it takes advantage of already 'sorted'
elements in the list that is to be sorted. That is, while sorting if the source list has some
element already sorted, adaptive algorithms will take this into account and will try not to
re-order them.

A non-adaptive algorithm is one which does not take into account the elements which are
already sorted. They try to force every single element to be re-ordered to confirm their
sortedness.

Important Terms

Some terms are generally coined while discussing sorting techniques, here is a brief
introduction to them —

Increasing Order:

A sequence of values is said to be in increasing order, if the successive element is greater
than the previous one. For example, 1, 3, 4, 6, 8, 9 are in increasing order, as every next
element is greater than the previous element.

Decreasing Order:

A sequence of values is said to be in decreasing order, if the successive element is less
than the current one. For example, 9, 8, 6, 4, 3, 1 are in decreasing order, as every next
element is less than the previous element.

Non-Increasing Order:

A sequence of values is said to be in non-increasing order, if the successive element is
less than or equal to its previous element in the sequence. This order occurs when the
sequence contains duplicate values. For example, 9, 8, 6, 3, 3, 1 are in non-increasing
order, as every next element is less than or equal to (in case of 3) but not greater than any
previous element.

Non-Decreasing Order:

A sequence of values is said to be in non-decreasing order, if the successive element is
greater than or equal to its previous element in the sequence. This order occurs when the
sequence contains duplicate values. For example, 1, 3, 3, 6, 8, 9 are in non-decreasing
order, as every next element is greater than or equal to (in case of 3) but not less than the
previous one.

Bubble Sort:

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based
algorithm in which each pair of adjacent elements is compared and the elements are
swapped if they are not in order. This algorithm is not suitable for large data sets as its
average and worst case complexity are of O(n2) where n is the number of items.

How Bubble Sort Works?

We take an unsorted array for our example. Bubble sort takes O(n2) time so we're
keeping it short and precise.

(33)

[10 [z s []

Bubble sort starts with very first two elements, comparing them to check which one is

T MEEE

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we
compare 33 with 27.

[0 3o][]

We find that 27 is smaller than 33 and these two values must be swapped.

B0a0n

The new array should look like this —

[14][z [0 s8] 0]

Next we compare 33 and 35. We find that both are in already sorted positions.

B0

Then we move to the next two values, 35 and 10.

(14l [L2 0]

We know then that 10 is smaller 35. Hence they are not sorted.

[1e][n [0 [oe] 0]

(34)

10 l

We swap these values. We find that we have reached the end of the array. After one
iteration, the array should look like this —

(1] 2730 [10][ss]

To be precise, we are now showing how an array should look like after each iteration.
After the second iteration, it should look like this —

[z [0 [[8]

Notice that after each iteration, at least one value moves at the end.

[16] 20z)0 s |

And when there's no swap required, bubble sorts learns that an array is completely sorted.

 PEEEE |

We assume list is an array of n elements. We further assume that swap function swaps the
values of the given array elements.
begin BubbleSort(list)

for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if
end for

return list
end BubbleSort
C program for Bubble Sort:
#include <stdio.h>
#include <stdbool.h>

#define MAX 10

int listt MAX] = {1,8,4,6,0,3,5,2,7.9};

(35)

void display() {
int 1;
printf("[");

// navigate through all items

for(i=0; i <MAX; i++) {
printf("%d ",list[i]);

}

printf("]\n");
}

void bubbleSort() {
int temp;
int i,j;

bool swapped = false;

// loop through all numbers
for(i=0; i < MAX-1; i++) {
swapped = false;

//'loop through numbers falling ahead
for(j = 0; j < MAX-1-i; j++) {
printf(" Items compared: [%d, %d] ", list[j],list[j+1]);

// check if next number is lesser than current no
/I swap the numbers.
// (Bubble up the highest number)

if(list[j] > list[j+1]) {
temp = list[j];
list[j] = list[j+1];
list[j+1] = temp;

swapped = true;

printf(" => swapped [%d, %d]\n" list[j],list[j+1]);
telse {

printf(" => not swapped\n");

}
}

// if no number was swapped that means
/I array is sorted now, break the loop.
if(!swapped) {

break;

(36)

}

printf("Iteration %d#: ",(i+1));
display();

}

main() {
printf("Input Array: ");
display();
printf("n");

bubbleSort();
printf("\nOutput Array: ");
display();

}

If we compile and run the above program, it will produce the following result —
Input Array: [1846035279]

Items compared:
Items compared:
Items compared:

[] => not swapped

[

[
Items compared: [

[

[

[

[

1,8

8,4] => swapped [4, 8]
8,6] => swapped [6, 8]
8,0] => swapped [0, 8]
8,3] => swapped [3, 8]
8,5 8]
8,2 8]
8,7 8]
8

B

B

Items compared:
Items compared: [8, 5] => swapped [5,
Items compared:] => swapped [2,
Items compared:] => swapped [7,
Items compared: [8, 9] => not swapped
Iteration 1#: [14603 52789]
Items compared: [1,4] => not swapped
Items compared: [4, 6] => not swapped
Items compared: [6,0 | => swapped [0, 6
Items compared: [6, 3] => swapped [3, 6
Items compared: [6, 5] => swapped [5, 6
Items compared: [6, 2 | => swapped [2, 6
Items compared: [6, 7] => not swapped
Items compared: [7, 8 | => not swapped
Iteration 2#: [1403 526789]
Items compared: [1,4] => not swapped
Items compared: [4,0] => swapped [0, 4]
Items compared: [4,3 | => swapped [3, 4]
Items compared: [4, 5] => not swapped
Items compared: [5,2] => swapped [2, 5]
Items compared: [5, 6 | => not swapped
Items compared: [6, 7] => not swapped

B

B

]
]
]
]

(37

Iteration 3#: [1034256789]
Items compared: [1,0] => swapped [0, 1]
Items compared: [1,3] => not swapped
Items compared: [3,4 | => not swapped
Items compared: [4, 2] => swapped [2, 4]
Items compared: [4, 5] => not swapped
Items compared: [5, 6 | => not swapped
Iteration 4#: [0132456789]
Items compared: [0, 1 | => not swapped
Items compared: [1, 3 | => not swapped
Items compared: [3,2] => swapped [2, 3]
Items compared: [3,4 | => not swapped
Items compared: [4, 5] => not swapped
Iteration 5#: [0123456789]
Items compared: [0, 1 | => not swapped
Items compared: [1,2 | => not swapped
Items compared: [2, 3] => not swapped
Items compared: [3,4 | => not swapped

Output Array: [0123456789]

Selection Sort: Selection sort is a simple sorting algorithm. This sorting algorithm is an in-
place comparison-based algorithm in which the list is divided into two parts, the sorted part at
the left end and the unsorted part at the right end. Initially, the sorted part is empty and the
unsorted part is the entire list. The smallest element is selected from the unsorted array and
swapped with the leftmost element, and that element becomes a part of the sorted array. This
process continues moving unsorted array boundary by one element to the right. This
algorithm is not suitable for large data sets as its average and worst case complexities are of
O(n2), where n is the number of items.

How Selection Sort Works?
Consider the following depicted array as an example.

‘f 14 || a3 || 27 H 10 | 35 H 19 H a2 || a4 ‘

For the first position in the sorted list, the whole list is scanned sequentially. The first
position where 14 is stored presently, we search the whole list and find that 10 is the
lowest value.

14 (ss 2710 38 [1042 [aa)

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value
in the list, appears in the first position of the sorted list.

(3%)

[1#](ss [z Jfro (oo (10][2] =]

For the second position, where 33 is residing, we start scanning the rest of the list in a
linear manner.

(10 [s0 2714 8]0 2 []

We find that 14 is the second lowest value in the list and it should appear at the second
place. We swap these values.

(0] [s) (oo L2 (]

After two iterations, two least values are positioned at the beginning in a sorted manner.

[10] () [s)10 [2]

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process —

B (=)= (== (oo)2)]
| EE [E3E)
D D O (== (== (=7 (2 (]
N =) -)& =])(]
(550 (550 @S0 () 2= [==)(+=][<]
BEEE=)=])=]]
) O) == (<= (]
))) (== (= (]
()) (=) 5) (65 ()

Algorithm:

Step 1 — Set MIN to location 0

Step 2 — Search the minimum element in the list
Step 3 — Swap with value at location MIN

Step 4 — Increment MIN to point to next element
Step 5 — Repeat until list is sorted

C program for Selection Sort:
#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};

void printline(int count) {
int i;

for(i = 0;1 <count-1;i++) {
printf("=");
H

printf("=\n");
H

void display() {
int 1;
printf("[");
// navigate through all items
for(i = 0;i<MAX;i++) {
printf("%d ", intArray([i]);
}

printf("T\n");

void selectionSort() {
int indexMin,1,j;

// loop through all numbers
for(i=0; 1 < MAX-1; i++) {

// set current element as minimum
indexMin = i;

/! check the element to be minimum
for(j = i+1;)<MAX;j++) {

(40)

if(intArray[j] < intArray[indexMin]) {
indexMin = j;
H
H

if(indexMin !=1) {
printf("Items swapped: [%d, %d [\n" , intArray[i], intArray[indexMin]);

// swap the numbers

int temp = intArray[indexMin];
intArray[indexMin] = intArray[i];
intArray[i] = temp;

}

printf("Iteration %d#:",(i+1));
display();

}

main() {
printf("Input Array: ");
display();
printline(50);
selectionSort();
printf("Output Array: ");
display();
printline(50);

}

If we compile and run the above program, it will produce the following result —
Input Array: [4632197]

Items swapped: [4, 1]
Iteration 1#:[1 632497]
Items swapped: [6, 2]
Iteration 2#:[123 6497]
Iteration 3#:[123 6497 |
Items swapped: [6, 4 |
Iteration 4#:[1234697]
Iteration 5#:{1234697]
Items swapped: [9, 7 |
Iteration 6#:[1234679]
Output Array: [1234679]

Merge Sort: Merge sort is a sorting technique based on divide and conquer technique.
With worst-case time complexity being O(n log n), it is one of the most respected
algorithms. Merge sort first divides the array into equal halves and then combines them in
a sorted manner.

(41)

How Merge Sort Works?
To understand merge sort, we take an unsorted array as the following —

‘14N33H 27 Hm Has H19”42 HM‘

We know that merge sort first divides the whole array iteratively into equal halves unless
the atomic values are achieved. We see here that an array of 8 items is divided into two
arrays of size 4.

4wz)[s0] s8]0)2 []

This does not change the sequence of appearance of items in the original. Now we divide
these two arrays into halves.

;14‘33‘ {2?{1{: 35‘19‘ ‘42‘44

We further divide these arrays and we achieve atomic value which can no more be
divided

‘, = ‘ ‘ = ‘; ‘I

5141 ‘33‘ ‘2?‘ ‘mi

Atul starts from here

Now, we combine them in exactly the same manner as they were broken down. Please
note the color codes given to these lists.

We first compare the element for each list and then combine them into another list in a
sorted manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and
in the target list of 2 values we put 10 first, followed by 27. We change the order of 19
and 35 whereas 42 and 44 are placed sequentially.

_‘14”33J ‘mﬂz?J ‘19}

r

35 | MJWJ

In the next iteration of the combining phase, we compare lists of two data values, and
merge them into a list of found data values placing all in a sorted order.

[42}[44"‘

{ 10 H 14 HE? ”33 w ‘i.19 H 35.

(42)

After the final merging, the list should look like this —

10 [1a e [27 [[s0 [o8 [42]]

Now we should learn some programming aspects of merge sorting.

Algorithm:

Merge sort keeps on dividing the list into equal halves until it can no more be divided. By
definition, if it is only one element in the list, it is sorted. Then, merge sort combines the
smaller sorted lists keeping the new list sorted too.

Step 1 —if it is only one element in the list it is already sorted, return.
Step 2 — divide the list recursively into two halves until it can no more be divided.
Step 3 — merge the smaller lists into new list in sorted order.

C Program for Merge Sort:
#include <stdio.h>
#define max 10

int a[10] = {10, 14, 19, 26, 27, 31, 33,35, 42,44 };
int b[10];

void merging(int low, int mid, int high) {
ntll, 12, 1;

for(11 = low, 12 =mid + 1, i = low; 11 <= mid && 12 <= high; i++) {
if(a[l1] <= a[12])
b[i] = a[l1++];
else
b[i] = a[12++];

while(11 <= mid)
b[i++] = a[11++];

while(12 <= high)
b[i++] = a[12++];

for(i = low; i <= high; i++)
a[i] = b[i];
H

void sort(int low, int high) {
int mid;

if(low < high) {

(43)

mid = (low + high) / 2;
sort(low, mid);
sort(mid+1, high);
merging(low, mid, high);

telse {
return;

}

}

int main() {
int 1;

printf("List before sorting\n");

for(i = 0; i <= max; i++)
printf("%d ", a[i]);

sort(0, max);
printf("\nList after sorting\n");

for(i = 0; 1 <= max; i++)
printf("%d ", a[i]);
H

If we compile and run the above program, it will produce the following result —

Output

List before sorting
101419262731333542440
List after sorting
010141926273133354244

Insertion Sort: This is an in-place comparison-based sorting algorithm. Here, a sub-list is
maintained which is always sorted. For example, the lower part of an array is maintained to
be sorted. An element which is to be inserted in this sorted sub-list, has to find its appropriate
place and then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the
sorted sub-list (in the same array). This algorithm is not suitable for large data sets as its
average and worst case complexity are of O(n2), where n is the number of items.

How Insertion Sort Works?
We take an unsorted array for our example.

4% L2 e 2 1o)| 42) &)

(44)

Insertion sort compares the first two elements.

BoEnaoan

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-

. @BEEEEEEE

Insertion sort moves ahead and compares 33 with 27.

(][][0 [][0][|[]

And finds that 33 is not in the correct position.
e L]«

HBRane

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see
that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the

sorted sub-list remains sorted after swapping.
o) 2]«

BEDNE

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

(e)o] s [e [2]]

These values are not in a sorted order.

BEnaRnnn

So we swap them.

(1410 (2] 0 35 [10][]

(45)

However, swapping makes 27 and 10 unsorted.

[14 J[E? H 33 ‘[10M 35 H 19 H 42 H 44 ‘

Hence, we swap them too.

[e)=)=]

Again we find 14 and 10 in an unsorted order.

m'_][_ s | 1 _"\[) u)

2 [a5 | 19 |[42 | a4 |

14 |10 27 |

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

(o)==

This process goes on until all the unsorted values are covered in a sorted sub-list.

=

35“ 19 H 42‘

Algorithm:
Now we have a bigger picture of how this sorting technique works, so we can derive
simple steps by which we can achieve insertion sort.

Step 1 — If it is the first element, it is already sorted. return 1

Step 2 — Pick next element

Step 3 — Compare with all elements in the sorted sub-list

Step 4 — Shift all the elements in the sorted sub-list that is greater than the
value to be sorted

Step 5 — Insert the value

Step 6 — Repeat until list is sorted

C Program for Insertion Sort:
#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};
void printline(int count) {

int i;

(46)

for(i = 0;i <count-1;i++) {
printf("=");
H

printf("=\n");
H

void display() {
int 1;
printf("[");

// navigate through all items
for(i = 0;i<MAX;i++) {

printf("%d ",intArray[i]);
}

printf("T\n");
H

void insertionSort() {

int valueTolnsert;
int holePosition;
nti;

// loop through all numbers
for(i=1; i < MAX; i++) {

// select a value to be inserted.
valueTolnsert = intArray[i];

// select the hole position where number is to be inserted
holePosition = i;

/I check if previous no. is larger than value to be inserted

while (holePosition > 0 && intArray[holePosition-1] > valueTolnsert) {
intArray[holePosition] = intArray[holePosition-1];
holePosition--;
printf(" item moved : %d\n" , intArray[holePosition]);

}

if(holePosition !=1) {
printf(" item inserted : %d, at position : %d\n" , valueTolnsert,holePosition);
// insert the number at hole position
intArray[holePosition] = valueTolnsert;

}

printf("Iteration %d#:",1);

(47)

display();

}
}

main() {
printf("Input Array: ");
display();
printline(50);
insertionSort();
printf("Output Array: ");
display();
printline(50);

}

If we compile and run the above program, it will produce the following result —

Input Array: [4632197]

Iteration 1#:(4 632197]
item moved : 6

item moved : 4

item inserted : 3, at position : 0
Iteration 2#:[34 62197]
item moved : 6

item moved : 4

item moved : 3

item inserted : 2, at position : 0
Iteration 3#:[12346 197]
item moved : 6

item moved : 4

item moved : 3

item moved : 2

item inserted : 1, at position : 0
Iteration 4#:{1234 697]
Iteration 5#:[123469 7]
item moved : 9

item inserted : 7, at position : 5
Iteration 6#:[1234679]
Output Array: [1234679]

Quick Sort: Quick sort is a highly efficient sorting algorithm and is based on partitioning
of array of data into smaller arrays. A large array is partitioned into two arrays one of
which holds values smaller than the specified value, say pivot, based on which the
partition is made and another array holds values greater than the pivot value. Quick sort
partitions an array and then calls itself recursively twice to sort the two resulting
subarrays. This algorithm is quite efficient for large-sized data sets as its average and
worst case complexity are of O(nlogn), where n is the number of items.

(48)

Partition in Quick Sort:
Following example explains how to find the pivot value in an array.

The pivot value divides the list into two parts. And recursively, we find the pivot for each
sub-lists until all lists contains only one element.

Alel A[7] Alg] A[9] A[10] A[11] Al12]

9 84 65 108 60 % 72
72 84 65 1138 60 % 93
72 84 65 éé 60 9'-% 108
72 a4 65 96 60 98 108

Pivot

Step 1 — Choose the highest index value as pivot

Step 2 — Take two variables to point left and right of the list excluding pivot
Step 3 — left points to the low index

Step 4 — right points to the high index

Step 5 — while value at left is less than pivot move right

Step 6 — while value at right is greater than pivot move left

Step 7 — if both step 5 and step 6 does not match swap left and right

Step 8 — if left 2 right, the point where they met is new pivot

Quick Sort Algorithm:

Using pivot algorithm recursively, we end up with smaller possible partitions. Each
partition is then processed for quick sort. We define recursive algorithm for quicksort as
follows —

Step 1 — Make the right-most index value pivot
Step 2 — partition the array using pivot value
Step 3 — quicksort left partition recursively
Step 4 — quicksort right partition recursively

C Program for Quick Sort:
#include <stdio.h>

#include <stdbool.h>

#define MAX 7

int intArray[MAX] = {4,6,3,2,1,9,7};

void printline(int count) {

(49)

int 1;

for(i = 0;i <count-1;i++) {
printf("=");
}

printf("=\n");
b

void display() {
int 1;
printf("[");

// navigate through all items
for(i = 0;i<MAX;i++) {

printf("%d ",intArray[i]);
H

printf("]\n");
H

void swap(int numl, int num2) {
int temp = intArray[numl];
intArray[num1] = intArray[num2];
intArray[num2] = temp;

}

int partition(int left, int right, int pivot) {
int leftPointer = left -1;
int rightPointer = right;

while(true) {
while(intArray[++leftPointer] < pivot) {
//do nothing

}

while(rightPointer > 0 && intArray[--rightPointer] > pivot) {
//do nothing

}

if(leftPointer >= rightPointer) {
break;
telse {
printf(" item swapped :%d,%d\n", intArray[leftPointer],intArray[rightPointer]);
swap(leftPointer,rightPointer);
}
}

(50)

printf(" pivot swapped :%d,%d\n", intArray[leftPointer],intArray[right]);
swap(leftPointer,right);

printf("Updated Array: ");

display();

return leftPointer;

}

void quickSort(int left, int right) {
if(right-left <= 0) {
return;
telse {
int pivot = intArray[right];
int partitionPoint = partition(left, right, pivot);
quickSort(left,partitionPoint-1);
quickSort(partitionPoint+1,right);
}
}

main() {
printf("Input Array: ");
display();
printline(50);
quickSort(0,MAX-1);
printf("Output Array: ");
display();
printline(50);

}

If we compile and run the above program, it will produce the following result —
Output

Input Array: [4632197]

pivot swapped :9,7

Updated Array: [4632179]
pivot swapped :4,1

Updated Array: [1 632479]
item swapped :6,2

pivot swapped :6,4

Updated Array: [1234679]
pivot swapped :3,3

Updated Array: [1234679]
Output Array: [1234679]

(51

Important Points

e Sorting algorithm specifies the way to arrange data in a particular order. Most
common orders are in numerical or lexicographical order.

e Bubble sort is a simple sorting algorithm. This sorting algorithm is
comparison-based algorithm in which each pair of adjacent elements is
compared and the elements are swapped if they are not in order.

e Merge sort is a sorting technique based on divide and conquer technique.
With worst-case time complexity being O(n log n), it is one of the most

respected algorithms.

e Quick sort is a highly efficient sorting algorithm and is based on partitioning

ofarray of data into smaller arrays.

Exercise

Objective type questions.
Q1. The complexity of Bubble sort algorithm is

a. O(n)
b. O(logn)
c. O(n2)
d. O(nlogn)
Q2. The complexity of merge sort algorithm is
a. O(n)
b. O(logn)
c. 0O(n2)
d. O(nlogn)
Q3. The complexity of selection sort algorithm is
a. O(n)
b. O(logn)
c. 0O(n2)
d. O(nlogn)

Q4. Which is the good sorting algorithm.
a. Selection sort
b. Insertion sort sort

¢. Quick sort
d. None
Q5. The complexity of quick sort algorithm is.
a. O(n)
b. O(logn)
c. O(m2)
d. O(nlogn)

Short answer type questions.
Q1. What is sorting ?

Q2. What is Stable sort ?

Q3. What is in-place sorting ?
Q4. What is worst case running time of Quick sort ?

(52)

Q5. When is the worst case for quick sort ?

Essay type questions.

Q1. Explain merge sort in detail ?

Q2. Which is the best sorting algorithm and Why ?

Q3. Explain Quick sort ?

Q4. Differentiate between selection and insertion sort ?

Q5. What is the difference between stable and unstable sorting ?

Answers
Ansl.C Ans2.d Ans3.c
Ansd.c Ans5.d

Chapter 4
(53)

Stack:

Asstack is an Abstract Data Type (ADT), commonly used in most programming languages. It
is named stack as it behaves like a real-world stack, for example — a deck of cards or a pile of
plates, etc.

=

B ™ |
. o

A real-world stack anows operauois dt viE CuU VILLY. ¢ Ulmuuu place or remove a
card or plate from the top of the stack only. Likewise, Stack ADT allows all data operations at
one end only. At any given time, we can only access the top element of a stack. This feature
makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which is
placed (inserted or added) last, is accessed first. In stack terminology, insertion operation is
called PUSH operation and removal operation is called POP operation.

Stack Presentation: The following diagram depicts a stack and its operations —

E
g
Last In - First Out
Push Pop
Data Elamant Data Elernent
Data Elemant Din Elgmant
Data Element Data Elemand
Data Elamant Drata Elerment
Data Elemant Drin Elamant
A stack can b Stack Stack nked List. Stack

can either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to
implement stack using arrays, which makes it a fixed size stack implementation.

Basic Operations:
Stack operations may involve initializing the stack, using it and then de-initializing it. Apart
from these basic stuffs, a stack is used for the following two primary operations —

push() —Pushing (storing) an element on the stack.

pop() — Removing (accessing) an element from the stack.

(54)

To use a stack efficiently, we need to check the status of stack as well. For the same purpose,
the following functionality is added to stacks —

peek() — get the top data element of the stack, without removing it.
isFull() — check if stack is full.
isEmpty() — check if stack is empty.

At all times, we maintain a pointer to the last Pushed data on the stack. As this pointer always
represents the top of the stack, hence named TOP. The TOP pointer provides top value of the
stack without actually removing it.
Procedures to support stack functions —
peek():
Algorithm of peek() function—
begin procedure peek

return stack[top]
end procedure

Implementation of peek() function in C programming language —

intpeek() {
return stack[top];

}

isfull():
Algorithm of isfull() function —

begin procedure isfull

iftop equals to MAXSIZE
return true
else

return false
endif

end procedure
Implementation of isfull() function in C programming language —
boolisfull() {

if(top==MAXSIZE)
return true;

(55)

else
return false;
}

isempty():
Algorithm of isempty() function —

begin procedure isempty

iftop less than 1
return true
else
return false
endif

end procedure

Implementation of isempty() function in C programming language is slightly different. We
initialize top at-1, as the index in array starts from 0. So we check if the top is below zero or -1
to determine if the stack is empty. Here's the code —

bool isempty() {
if(top==-1)
return true;
else
return false;

}

Push Operation: The process of putting a new data element onto stack is known as a Push
Operation. Push operation involves a series of steps —

Step 1 — Checks ifthe stack is full.

Step 2 — If the stack is full, produces an error and exit.

Step 3 —If the stack is not full, increments top to point next empty space.

Step 4 — Adds data element to the stack location, where top is pointing.

Step 5 — Returns success.

E \ Push Operation

top—— £

If the linked list 1o wove w sipioinoie wiv swsvn, w1 oo w need to allocate space

dynamically.

(56)

Algorithm for Push Operation:
begin procedure push: stack, data
if stack is full
return null
endif

top «top+1

stack[top] «<data

end procedure
Implementation of algorithm in C —

void push(int data) {
if(!isFull()) {
top=top+1;
stack[top] =data;
telse {
printf("Could not insert data, Stack is full.\n");

}
}

Pop Operation: Accessing the content while removing it from the stack, is known as a Pop
Operation. In an array implementation of pop() operation, the data element is not actually
removed, instead top is decremented to a lower position in the stack to point to the next value.
But in linked-list implementation, pop() actually removes data element and deallocates
memory space.
A Pop operation may involve the following steps —

Step 1 — Checks if the stack is empty.

Step 2 —If the stack is empty, produces an error and exit.

Step 3 — Ifthe stack is not empty, accesses the data element at which top is pointing.

Step 4 — Decreases the value of top by 1.

Step 5 —Returns success.

Pop Operation

top— E |
o tDp‘ +| D
L | L
B | =]
Algorithm fo ‘ Stack Stack

(57)

begin procedure pop: stack

if stack is empty
return null
endif

data <stack|top]

top «top-1

return data
end procedure
Implementation of algorithminC—
intpop(int data) {

if(lisempty()) {
data=stack[top];
top=top-1;
return data;
telse {
printf("Could not retrieve data, Stack is empty.\n");

}
H

Application of Stack: Stack can be used for following purpose-
(a) Arithmetic expression evaluation

(b) Backtracking

(c) Memory Management

(a) Arithmetic expression evaluation: The way to write arithmetic expression is known as a
notation. An arithmetic expression can be written in three different but equivalent notations,
i.e., without changing the essence or output of an expression. These notations are —

Infix Notation

Prefix (Polish) Notation

Postfix (Reverse-Polish) Notation

These notations are named as how they use operator in expression.

Infix Notation

We write expression in infix notation, e.g. a - b + ¢, where operators are used in-between
operands. It is easy for us humans to read, write, and speak in infix notation but the same does
not go well with computing devices. An algorithm to process infix notation could be difficult
and costly in terms of time and space consumption.

(58)

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of operands.
For example, +ab. This is equivalent to its infix notation a + b. Prefix notation is also known
as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style, the operator
is postfixed to the operands i.e., the operator is written after the operands. For example, ab+.
This is equivalent to its infix notationa+b.

So the stack is used for conversion an expression from one notation to another notation.

(b) Backtracking: Backtracking is used in algorithms in which there are steps along some
path (state) from some starting point to some goal.

Find your way through a maze.

Find a path from one point in a graph (roadmap) to another point.

In all of these cases, there are choices to be made among a number of options. We need some
way to remember these decision points in case we want/need to come back and try the other
alternative

Consider the maze. Ata point where a choice is made, we may discover that the choice leads
to a dead-end. We want to retrace back to that decision point and then try the other (next)
alternative.

Again, stacks can be used as part of the solution. Recursion is another, typically more
favored, solution, which is actually implemented by a stack.

(c) Memory Management: Any modern computer environment uses a stack as the primary
memory management model for a running program. Whether it's native code (x86, Sun,
VAX) or JVM, a stack is at the center of the run-time environment for Java, C++, Ada,
FORTRAN, etc.

Queue:

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is
open at both its ends. One end is always used to insert data (enqueue) and the other is used to
remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item
stored first will be accessed first.

LAST IN FIRST IN
LAST OUT FIRST OUT

(59)

first, exits first. More real-world examples can be seen as queues at the ticket windows of
bus-stops and others.

Queue presentation:
As we now understand that in queue, we access both ends for different reasons. The
following diagram given below tries to explain queue representation as data structure —

|
In Data Data Data Data Data Data Out
| >
Last In Last Out First In First Out

Queue

AS 1 briiu, © qutue tain WOy Uv aspivivies woiss 1Ak Uy st oy 1 Uiees wild

Structures. For the sake of simplicity, we shall implement queues using one-dimensional
array.

Basic Operations:
Queue operations may involve initializing or defining the queue, utilizing it, and then
completely erasing it from the memory. Here we shall try to understand the basic operations
associated with
queues —

enqueue() — add (store) an item to the queue.

dequeue() — remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation efficient.
These are —

peek() — Gets the element at the front of the queue without removing it.
isfull() — Checks if the queue is full.
isempty() — Checks if the queue is empty.

supportive functions of a queue —

peek()
The algorithm of peek() function is as follows —

begin procedure peek
return queue[front]

end procedure

(60)

Implementation of peek() function in C programming language —
Example

int peek() {
return queue[front];

}
isfull():

As we are using single dimension array to implement queue, we just check for the rear
pointer to reach at MAXSIZE to determine that the queue is full. In case we maintain the
queue in a circular linked-list, the algorithm will differ. Algorithm of isfull() function —

begin procedure isfull

ifrear equals to MAXSIZE
return true

else
return false

endif

end procedure

Implementation of isfull() function in C programming language —

boolisfull() {
if(rear==MAXSIZE-1)
return true;
else
return false;
}

isempty():
Algorithm of isempty() function —
begin procedure isempty
if front is less than MIN or front is greater than rear
return true
else

return false
endif

(61)

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized, hence
empty.

Here's the C programming code —
bool isempty() {
if(front <0 || front >rear)
return true;
else
return false;
Enqueue Operation:
Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.
The following steps should be taken to enqueue (insert) data into a queue —
Step 1 — Check ifthe queue is full.
Step 2 —If'the queue is full, produce overflow error and exit.
Step 3 —Ifthe queue is not full, increment rear pointer to point the next empty space.

Step 4 — Add data element to the queue location, where the rear is pointing.

Step 5 — Return success.

Rear Front

\—’ ¢ 8 A before

Rear Front
D C B A after
Algor Queue Enqueue

(62)

procedure enqueue(data)
if queue s full
return overflow
endif

rear <rear+ 1

queue[rear] «data
return true
end procedure
Implementation of enqueue() in C programming language —

intenqueue(int data)
if(isfull())
return 0;

rear=rear+1;
queue[rear] =data;

return 1;

end procedure
Dequeue Operation:
Accessing data from the queue is a process of two tasks — access the data where front is
pointing and remove the data after access. The following steps are taken to perform dequeue
operation —

Step 1 —Check if the queue is empty.

Step 2 —Ifthe queue is empty, produce underflow error and exit.

Step 3 — Ifthe queue is not empty, access the data where front is pointing.

Step 3 — Increment front pointer to point to the next available data element.

Step 5 — Return success.

Rear Front
before o 5 - 5
Hear F"t:lnt
— = c g dequeue
Queue
[
Algorithn Queue Dequeue

(63)

procedure dequeue
if queue is empty
return underflow
endif

data=queue[front]
front <front+ 1

return true
end procedure

Implementation of dequeue() in C programming language —

intdequeue() {

if(isempty())
return 0;

int data= queue[front];
front=front+1;

return data;

}

Important Points

e A stack is an Abstract Data Type (ADT), commonly used in most
programming languages.

e A stack can be implemented by means of Array, Structure, Pointer, and
Linked List. Stack can either be a fixed size one or it may have a sense of
dynamicresizing.

e Queue is an abstract data structure, somewhat similar to Stacks. Unlike
stacks, a queue is open at both its ends.

e Any modern computer environment uses a stack as the primary memory
management model for a running program.

Exercise

Objective type questions.

Q1. Which of the following name does not relate to stacks.
a. FIFO lists
b. LIFO list
c. Pop
d. Push-down lists

Q2. The term "push" and "pop" is related to the
a. array

(64)

b. lists
c. stacks
d. all of above
Q3. A data structure where elements can be added or removed at either end but not in the
middle.
a. Linked lists
b. Stacks
c¢. Queues
d. Dequeue
Q4.The data structure required for Breadth First Traversal on a graph is.
a .Stack
b. Array
¢. Queue
d. Tree
Q5. A queue is a.
a. FIFO (First In First Out) list
b. LIFO (Last In First Out) list.
c. Ordered array
d. Linear tree

Short answer type questions.

Q1. Define stack ?

Q2. Define Queue ?

Q3. What is Push operation ?

Q4. What is Pop operation ?

Essay type questions.

Q1. What are some of the applications for the stack data structure ?
Q2. Explain stack operations in detail ?

Q3. Explain circular queue in detail ?

Q4. Explain dequeue ?

Answers
Ansl.a Ans2.c Ans3.d
Ans4.c AnsS.a
ChapterS5

(65)

Linked List:

Linked listis a linear data structure that contains sequence of elements such that each element
links to its next element in the sequence. Each element in a linked list is called as "Node".

Simply a listis a sequence of data, and linked list is a sequence of data linked with each other.
linked list is the second most-used data structure after array. Following are the important
terms to understand the concept of Linked List.

Node — Each node contains data item and a pointer which is address of next node in list
Next— A pointer field which contains address of next node in list

Linked List Representation:
Linked list can be visualized as a chain of nodes, where every node points to the next node.

Head Mext MNeaxt MNeaxt
» Data ltems » | Data Hems » Data tems

Type -r‘T’Tl

Follo NULL
Single Linked List— Item navigation is forward only.
Doubly Linked List — Items can be navigated forward and backward.
Circular Linked List — Last item contains link of the first element as next and the first
element has a link to the last element as previous.

Advantages of Linked list: Following are advantages of linked list-

(a) Linked List is Dynamic Data Structure.

(b) Linked List can grow and shrink during run time.

(c)Insertion and Deletion Operations are easier

(d) Efficient Memory Utilization, i.e, no need to pre-allocate memory

(e) Faster Access time can be expanded in constant time without memory overhead

(f) Linear Data Structures such as Stack, Queue can be easily implemented using Linked
list

Disadvantages of Linked list:
(a) Memory wastage if required space is known
(b) Searching operations is difficult.

Basic Operations:

Basic operations supported by a list are
Insertion — Adds an element at the beginning of the list.
Deletion — Deletes an element at the beginning of the list.
Display — Displays the complete list.

(66)

Search — Searches an element using the given key.

Insertion Operation:

Adding a new node in linked list is a more than one step activity. We shall learn this with

diagrams here. First, create a node using the same structure and find the location where it has
to be inserted.

Head Meot

Meat
» Dataltems

» Data tems

NULL
MNext
Data tems
Imag d C
(Righk
point B.nextto C and NewNode.next—> RightNode;
It should look like this —
Haad Mext heat
. Dataltems _____._-—-—-—'—'_'_'_'_. Data ltems
~TT
NULL
L34
Data ltems
Now,
LeftNode.next —>NewNode;
Head MNeaxt Mext
» Data ltems Data ltams
NULL
Mext
Data ltems

Thisw

(67)

Head Mext MNext Mext
» Data hems » Data ltems » Data hems

MNULL

Silliiicn sriopo vivuiu Uv M 11 WY VB S USRS UV SR S Y Ui, o ur v e il
inserting it at the end, the second last node of the list should point to the new node and the new
node will pointto NULL.

Deletion Operation:
Deletion is also a more than one step process. We shall learn with pictorial representation.
First, locate the target node to be removed, by using searching algorithms.

Head Next Next
» Dataltems » Dataltems » Data ltems

The . ; 9 A NULL-get
node—
LeftNode.next — TargetNode.next;

Heac Nexm Mext
Data ltems Data tems Data ltems

— —

This at | de,
wew _ NULL
TargetNode.next—>NULL;

Haad Nlm/—_hl Mext
Data ltems Data ltems Data ltems

—

We NULLY
deallocate memory and wipe off the target node completely.

Head Mext Menxct
» Dataltems _ » Dataltems

Linked List' l r
#include <stc -

(68)

#include <string.h>
#include <stdlib.h>
#include <stdbool.h>

structnode {
int data;
intkey;
struct node *next;

3

struct node *head=NULL;
structnode *current=NULL;

//display the list

void printList() {
struct node *ptr=head;
printf("\n[");

//start from the beginning

while(ptr '=NULL) {
printf("(%d,%d) ",ptr->key,ptr->data);
ptr=ptr->next;

}

printf(" 1");
H

//insert link at the first location
void insertFirst(int key, int data) {
//create a link
struct node *link = (struct node*) malloc(sizeof(struct node));

link->key =key;
link->data = data;

//pointitto old first node
link->next=head;

//point first to new first node

head=link;
§

//delete firstitem
struct node* deleteFirst() {

//save reference to first link
struct node *tempLink =head;

(69)

//mark next to first link as first
head =head->next;

//return the deleted link
return tempLink;

}

/fis list empty
bool isEmpty() {
returnhead==NULL;

}

intlength() {
intlength=0;
struct node *current;

for(current=head; current !=NULL; current = current->next) {
length++;

}

return length;

}

//find a link with given key
structnode* find(intkey) {

//start from the first link
struct node* current =head;

//iflistis empty

if(head==NULL) {
return NULL;

}

//mavigate through list
while(current->key !=key) {

/fifitis lastnode
if(current->next==NULL) {
return NULL;
telse {
//go tonext link
current = current->next;

}
}

//if data found, return the current Link
return current;

(70)

}

//delete a link with given key
struct node* delete(intkey) {

//start from the first link
struct node* current =head;
structnode* previous=NULL,;

//iflistis empty

if(head==NULL) {
return NULL;

}

//mavigate through list
while(current->key !=key) {

/fifitis lastnode
if(current->next==NULL) {
return NULL;
telse {
/Istore reference to current link
previous = current;
//move to next link
current = current->next;

}
}

//found a match, update the link
if(current==head) {
//change first to point to next link
head =head->next;
telse {
//bypass the current link
previous->next = current->next;

}

return current;

}

void sort() {
int1,j, k, tempKey, tempData;
struct node *current;

struct node *next;

int size =1length();
k=size;

(71)

for(i=0;i<size-1;it++k--){
current=head;
next=head->next;

for(j=1:j<k;j++){

if (current->data >next->data) {
tempData = current->data;
current->data=next->data;
next->data =tempData;

tempKey = current->key;
current->key =next->key;
next->key =tempKey;

}

current = current->next;
next=next->next;

}
}
}

void reverse(struct node** head ref) {
structnode* prev. =NULL,;
struct node* current=*head_ref;
struct node* next;

while (current '=NULL) {
next = current->next;
current->next=prev;,
prev =current;
current =next;

}

*head ref=prev;

}

main() {
insertFirst(1,10);
insertFirst(2,20);
insertFirst(3,30);
insertFirst(4,1);
insertFirst(5,40);
insertFirst(6,56);

printf("Original List: ");

(72)

//print list
printList();

while(!isEmpty()) {
struct node *temp = deleteFirst();
printf("nDeleted value:");
printf("(%d,%d) ",temp->key,temp->data);
}

printf("\nList after deleting all items: ");
printList();

insertFirst(1,10);

insertFirst(2,20);

insertFirst(3,30);

insertFirst(4,1);

insertFirst(5,40);

insertFirst(6,56);

printf("\nRestored List: ");
printList();
printf("\n");

struct node *foundLink = find(4);

if(foundLink !=NULL) {
printf("Element found: ");
printf("(%d,%d) ",foundLink->key,foundLink->data);
printf("\n");
telse {
printf("Element not found.");

}

delete(4);

printf("List after deleting an item: ");
printList();

printf("\n");

foundLink =find(4);

if(foundLink !=NULL) {
printf("Element found: ");
printf("(%d,%d) ",foundLink->key,foundLink->data);
printf("\n");
telse {
printf("Element not found.");

}

printf("\n");
sort();

(73)

printf("'List after sorting the data: ");
printList();

reverse(&head);
printf("\nList after reversing the data: ");
printList();

}

If we compile and run the above program, it will produce the following result —

Original List:
[(6,56)(5,40)(4,1)(3,30)(2,20)(1,10)]
Deleted value:(6,56)

Deleted value:(5,40)

Deleted value:(4,1)

Deleted value:(3,30)

Deleted value:(2,20)

Deleted value:(1,10)

List after deleting all items:

[]

Restored List:
[(6,56)(5,40)(4,1)(3,30)(2,20)(1,10)]
Element found: (4,1)

List after deleting an item:
[(6,56)(5,40)(3,30)(2,20)(1,10)]
Element not found.

List after sorting the data:
[(1,10)(2,20)(3,30)(5,40)(6,56)]

List after reversing the data:
[(6,56)(5,40)(3,30)(2,20)(1,10)]

Important Points

e Linked list is a linear data structure that contains sequence of elements such
that each element links to its next element in the sequence. Each element in a

linked listis called as "Node".

e Linear Data Structures such as Stack, Queue can be easily implemented using

Linked list.
e Linked Listis Dynamic data Structure.

Exercise
Objective type questions.

(74)

Q1. Linked lists are best suited
a. for relatively permanent collections of data
b. for the size of the structure and the data in the structure are constantly changing
c. for both of above situation
d. for none of above situation
Q2. Generally collection of Nodes is called as

a. Stack

b. Linked List
c. Heap

d. Pointer

Q3. Which of the following is not a type of Linked List
a. Doubly Linked List
b. Singly Linked List
c. Circular Linked List
d. Hybrid Linked List
Q4. Linked list is generally considered as an example of type of memory
allocation.
a. Static
b. Dynamic
c. Compile Time
d. None of these
Q5. In a circular linked list
a. Components are all linked together in some sequential manner.
b. There is no beginning and no end.
c¢. Components are arranged hierarchically.
d. Forward and backward traversal within the list is permitted.

Short answer type questions.

QL. Define linked list ?

Q2. What is header linked list ?

Q3. Which is better In array and linked list ?
Q4. Define circular linked list ?

Essay type questions.

Q1. Explain doubly linked list ?

Q2. Differentiate between singly and doubly lined list ?
Q3. Which types of memory allocates linked list ?

Q4. Explain the uses of linked list ?

Answers
Ansl. b Ans2. b Ans3.d
Ans4. b Ans5. b

Chapter 6

(75)

Beginning with C++

6.1 Structure of C++ Program

A C++ program contains four sections as shown in figure 6.1. These sections
may be placed in different source files and then compiled independently or
jointly.

Include Files

Class Declaration

Member Function
Definition

) Main Function

Figl im

6.2 A Simple C++ Program
The following C++ program prints “Hello World” on the output screen.
Program 6.1 A Simple C++ Program
#include<iostream> //include header file
using namespace std;
int main()
{
cout<<*Hello World”; /lprint “Hello World”
return 0;

}

The output of the program 6.1 would be:
Hello World

Program features
e Like C, the C++ program is a collection of functions.
e Every C++ program must have a main function.
e Like C, the C++ statements terminate with semicolon(;).

Comments
e //(double slash) is used to comment a single line.
For example-
// This is my first C++ program.
o /* */used to comment multiple lines

(76)

For example-
/* This is my
first C++ program.*/

The iostream file

The statements preceded with # symbol are called pre-processor directive
statements. They are placed at the beginning of the C++ program. The pre-
processor processes these type of statements before the program is handed to
the compiler. The #include<iostream> statement adds the contents of the
iostream file to the program. It contains the declaration of the identifier cout
and the insertion operator (<<).

Namespace

It defines scope of the identifiers used in the program. To use namespace scope
we write using namespace std; std is the namespace where C++ standard class
libraries are defined.

6.3 Compiling and Linking
The process of compiling and linking depends on the operating system.
. Linux OS
The command g++ is used to compiling and linking a C++
program.
For example-
g++ abc.cpp

g++ command compile the program written in abc.cpp file. The
compiler produce an object file abc.o and then automatically link with
the library functions to produce an executable file. The default
executable file name is a.out.
° MS DOS

Turbo C++ and Borland C++ compilers provide integrated

development environment under MS DOS. They provide a built-in

editor with File, Edit, Compile and Run options.

-File option: To create and save the source file.

-Edit option: To edit the source file

-Compile option: To compile the program.

-Run option: To compile, link and run the program in one step.

6.4 Tokens

The smallest individual unit in a program is called token. C++ has the
following types of tokens:
o Keywords

(77)

6.5 Keywords

6.6

Identifiers
Constants
Operators
Strings

These are the reserved words whose meaning can't be changed by the
programmer. These words can't be used as a name of the variable,
constants or other user-defined program elements. The complete list of
C++ keywords are shown in table 6.1. Many of them are common to
both C and C++.

Table 6.1 C++ Keywords

asm double new switch
auto else operator template
break enum private this
case extern protected throw
catch float public try
char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default inline sizeof void
delete int static volatile
do long struct while
Identifiers

The names of variables, functions, arrays, classes etc. that are created
by the programmer are called identifiers. Each language has its own
rules for naming these identifiers. The following rules are common to
both C and C++:

e Only alphabetic characters, digits and underscore are allowed.

e The name can't begin with a digit.

e Uppercase and lowercase letters are distinct.

e Keywords can't be used as a variable name.

Constants
The fixed values that can't be changed during the execution of program

(78)

are called constants.

Examples:

65 // decimal integer

34.14 //floating point number

025 // octal integer

0x36 //hexadecimal integer

“Hello” //string constant

'z //character constant
6.7 Basic Data Types

Data types can be classified as shown in figure 6.2

Data Types

Basic Data Types User-defined data Derived data types

. types

nt array
structure .

char pointer
union .

float function
class

double reference

. F enumeration ta ty
void 1

The basic data types may have various modifiers which are placed before
them, except the void data type. The modifiers may be applied to characters
and integer basic data types. The modifier long can also be applied to double.
The list of modifiers is as follows:

e signed

e unsigned
e short

e long

The list of all combinations of the basic data types and the modifiers along
with their size and range is shown in table 6.2.
Table 6.2 Size and range of basic data types

(79)

Data type Size in bytes Range

char l -128t0 127

unsigned char 1 Oto 255

signed char 1 -128to 127

int 2 -32768 to 32767

unsigned int 2 0 to 65535

signed int 2 -32768 to 32767

short int 1 -128 to 127

long int 4 -2147483648 to 2147483647

float 4 34E-38 to 3.4E+38

double B |.7TE-308 to 1.7TE+308

long double 10 3 AE-4932 tol. 1E+4932
Structure

Basic data types are not sufficient to handle real world
problems. A structure is a group of basic data types and other data types.
The syntax of structure is:

struct name of structure
{
data type memberl;
data_type member2;

Let us take an example of a student which has several attributes such as
name, age, percentage etc.

struct student
charname[20];
intage;
float percentage;
53

struct student student], student2;

Here student]l and student2 are variables of user-defined data type
'student’.
Union

(80)

Union is similar to structure, but there is a difference between
structure and union. The size of structure type is equal to the sum of
sizes of individual member types while the size of union type is equal to
the size of'its largest member's type. For example:
union item
(I

intm;

floatx;

charc;
piteml;

This declares a variable item1 of type 'item'. This union contains
three members each with different data type. However, only one of
them can be used at a time. The variable item1 will occupy four bytes in
memory as its largest size member is of floating type variable x. If we
define item as a structure then the variable item1 will occupy seven
bytes in memory. We can say union is memory efficient alternative of
structure.

Class

Class 1s an important feature of C++. Just like any other basic
data types class type variable can be declared. The class type variables
are called objects. We will discuss classes in detail in chapter 9.

Enumerated Data Type

It is way of attaching names to numbers. The enum keyword
assign the numbers 0,1,2, and so on to the list of names.
For example:

enum color{red, green, blue};
By default red is assigned 0, green is assigned 1 and blue is assigned 2.
We can over-ride the default values by explicitly assigning integer
values to the enumerators.
For example:
enum color{red, green=3, blue=8};

Here, red is assigned 0 by default.

6.9 Derived Data Types
Arrays
An array is collection of elements of same type.

For example:
int numbers[5]={2, 7, 8, 9, 11};

Here, the 'numbers' is an array of size five and containing the five

(81)

integer type elements.

Functions

A function is part of a program which is used to perform a task.
Dividing a program in functions is one of the major principles of
structured programming. It reduces the size of program by calling and
using them at different places in the program. We will discuss functions
in more detail in chapter 8.

Pointers

A pointer is variable which is used to store the address of another
variable.

For example:

int x=5; //integer variable

int *ptr; // integer pointer variable

ptr= &x; //address of x assigned to ptr
*ptr=10; //the value of x is changed from 5 to 10

Reference Type

A variable of reference type is called reference variable. It provides an
alternative name for the previously defined variable.

For example:

int x=10;
int & y=x;

Here, x 1s an integer variable and y is a reference type variable and it
is an alternative name for already declared variable x.

cout<<x;

and
cout<<y;

both statements will print the value 10. The statement
X=x+5;

will change the values of both x and y to 15.

6.10 Type Compatibility
C++1is very strict to type compatibility as compared to C. int, short int
and long int are three different types. They must be type cast when their
values are assigned to one another. For an operation the type of operands
must be type compatible with the operation. There are two mechanisms to
achieve type compatibility.

(82)

Explicit type conversion
By using the type cast operator, explicit type conversion of variables
and expressions can performed.
Program 6.2: Explicit type conversion
#include<iostream>
using namespace std;
int main()
{
int 1=5;
float £=30.57;
cout<<*“1="<<i;
cout<<“\nf="<<f;
cout<<“\nfloat(i)="<<float(i);
cout<<“\nint(f)="<<int(f),
return 0;
}
The output of the program 6.2 would be:
1=5
£=30.57
float(1)=5
int(f)=30

Implicit type conversion

When an expression consists of mix data types, the compiler
performs the automatic type conversion by using the rule that smaller
type is converted to the wider type. Whenever a char or short int appears
in an expression, it is converted to int. This is called integral widening
conversion.

The following diagram shows the implicit conversion rule:

short
int long float double long double

char — — . >

6.11 Declaration of variables

In C, all variables are declared at the beginning of the program. In C++,
this is true but it also allows the declaration of variables anywhere in the
program. For example

int main()

(83)

int X,y; //variable declaration
cin>>x>>y;

int sum=x+y; //variable declaration
cout<<sum;

}

Important Points

C++program is a collection of functions.

Every C++ program must have a main function.

C++program statements terminate with semicolon.

Statements preceded with # symbol are called pre-processor directive
statements.

The smallest individual unitin a program is called token.

Reserved words whose meaning can't be changed by the programmer
are called keywords.

Names of variables, functions, arrays, classes etc. that are created by
the programmer are called identifiers.

Fixed values that can't be changed during the execution of program are
called constants.

Asstructure is a group of basic data types and other data types.

An array is collection of elements of same type.

A pointer is variable which is used to store the address of another
variable.

C++is very strict to type compatibility as compared to C.

Practice Questions

Objective type questions:
Q.1 Structure of a C++ program consist of

A. Class Declaration B. Member Function Definition
C. Main Function D. All of these

Q.2 Symbol used to comment a single line is

AN B.//
C.| D.!!
Q.3 Pre-processor directive statements are preceded with the symbol
A S B. #
C. & D. *
Q.4 In Linux OS, the command used to compiling and linking a C++ program is
A. g+t B. at++
C.y++ D. z++
Q.5 Which is a token?

(84)

A. Keywords B. Identifiers

C. Operators D. All of these
Q.6 Which is NOT a basic data type

A. int B. char

C. float D. class

Very Short Answer Type Questions:

Q.1 What are tokens?

Q.2 What are keywords?

Q.3 What are identifiers?

Q.4 What are constants?

Q.5 What is difference between structure and union?

Short Answer Type Questions:

Q. 1 Explain the classification of data types.

Q.2 What is enumerated data type?

Q.3 What is reference type?

Essay Type Questions:

Q.1 Explain compiling and linking of a C++ program on Linux OS.
Q.2 Explain the implicit and explicit type conversions with suitable examples.

Answer Key
1.D 2.A 3.B 4. A 5.D 6.D

Chapter 7

(85)

Operators, Expressions and Control Structures

7.1 Introduction
All operators in C are also valid in C++. In addition, C++ introduces some new
operators. They are following:

o << Insertion operator: It prints the contents of the variable on
its right to the output screen.

o >> Extraction operator: It takes the value from the keyboard
and assign it to the variable on its right.

o :: Scope resolution operator: C++ is a block-structured

language. Same variable name can be used in different blocks. The
scope of variable is in between the point of its declaration and end
of the block containing the declaration. A variable declared inside a
block is local to that block. The scope resolution operator is used to
access global version of a variable.

Program 7.1: Scope resolution operator

#include<iostream>

using namespace std;

intx=10; //global variable

int main()

{
intx=20; //x re-declared , local to main
{

cout<<“Inner block\n;

intx=30; //x declared again, local to inner block
cout<<“x="<<x<<*“\n”;

cout<<“iix="<<:x<<“\n”;

cout<<“Outer block\n”;
cout<<“x="<<x<<*“\n”;
cout<<*;:x="<<::x<<“\n”;
return 0;

}

The output the program 7.1 would be:
Inner block

x=30

:x=10

Outer block

(86)

x=20
x=10

e new operator: The operator allocates sufficient amount of memory to

data objectat run time. For example
int *p = new int;

The above statement allocates sufficient amount of memory to integer data

object at run time.

e delete operator: The operator de-allocates the memory when the data
object is no longer needed. So that the released memory can be reused
by the other programs.

Forexample
delete p;

The above statement de-allocates the memory pointed by the pointer
variable p.

7.2 Expressions and their types
An expression is a combination of operators, constants and variables
arranged as per the rule of the language. There are following types of
expressions:

e Constant expressions: It consists of only constant values. For example
20+10*5.2

o Integral expressions: Those expressions which produce integer
results after implementing implicit and explicit type conversions.
Examples:

x+y*10

x+'a'

5+int(7.5)

where x and y are integer variables.

e Float expressions: Those expressions which produce floating-point
results after implementing implicit and explicit type conversions.
Examples:

a+b/5
7+float(10)
where a and b are float type variables.

e Pointer expressions: Pointer expressions produce address values.

(87)

Examples:

ptr=&Xx;

ptr+1

where x is a variable and ptr is a pointer.

Relational expressions: Those expressions which produce Boolean
type results that is either true or false. Examples:

X<=y

a==b

Logical expressions: Those expressions which combines two or more
relational expressions and produce Boolean type result. Examples:

x>y && x==5
a==201|y==10

Bitwise expressions: These type of expressions are used to manipulate
data atbitlevel. They are used for testing or shifting bits. Examples:

a<<3 //shiftthree bits position to left
x>>1 //shift one bit position to right

Special Assignment Expressions:
Chained assignment

a=b=10;

First 10 is assigned to b then to a.

Embedded assignment

a=(b=20)+5;

(b=20) is an assignment expression called embedded assignment. Here,
the value 20 is assigned to b and then the result is assigned to a.

Compound assignment
It is a combination of the assignment operator and a binary arithmetic
operator.

Forexample:
The expression
a=a+t3;

can be written as
at+=5;

(88)

The operator +=is called compound assignment operator or short-hand
operator.

7.3 Operator precedence and associativity

If more than operators are involved in an expression, C++ language has
predefined rules of priority for the operators. The operator with higher priority
will execute before the operators with lower priority. This rule is called
operator precedence.

If two or more operators with same precedence are present in an
expression, the order in which they execute is called associativity of
operators. The complete list of C++ operators with their precedence from
highest to lowest and associativity is given in table 7.1.

Table 7.1 Operator precedence and associativity

Operator precedence Associativity
b Left to right
==, () [], 4+, —, =, |, unary+, unary-, unary* Left to right
Unary &, (type), sizeof, new, delete Right to left
- L% Left to right
+, - Left to right
<, B> Left to right
<, €=, > >= Left to right
—= Left to right
& Left to right
i Left to right
I Left to right
S Left to right
Il Left to right
T Left to right
=, #= [=, Oh=, 4= Right to left
<<=, >>=, &=, *=, |5, ,(comma) Left to right

1nere are tnrec types o1 control Structures:

(1) Sequence structure
(i) Selection structure
(ii1)) Loop structure

(89)

C++ supports all the three basic control structures and implements them
using various control statements.

(i) Sequence structure: Statements are executed sequentially as
they are written in program. Example:

statementl;
statement2;
statement3;

(ii) Selection structure: Two or more paths of execution out of
which one is selected based on a condition.

Examples:
The if statement
if(expression is true)

statements;

}

The if-else statement

if(expression is true)

{

statements;
}
else
{

statements;
J

The switch statement
switch(expression)
case 1: statements;
break;

case 2: statements;
break;

(90)

(iii)

case 3: statements;
break;
default : statements;

}

Loop structure: Statements are executed zero or more times.
Examples:
The for statement

The for loop 1s used when an action is to repeated for
predefined number of times.

for(initial value; test condition; increment/decrement)

{
}

The while statement

statements;

The statements within the while are executed till the
condition is true. It is pre-test condition loop.
while(condition is true)

{
}

The do-while statement

statements;

The loop is executed at least one time. It is post-test
condition loop.

do

{
statements;
}while(condition is true);

Important Points

All operators in C are also valid in C++.
C++is ablock-structured language.

An expression is a combination of operators, constants and variables
arranged as per the rule of the language.

(C2))

e The operator with higher precedence will execute before the operators
with lower precedence.

e (C++ supports all the three basic control structures and implements
them using various control statements.

Practice Questions

Objective type questions:

Q.1 Operator that prints the contents of the variable on its right to the output
screen 1s

A. << B.>>
C.: D. &

Q.2 Operator that allocates sufficient amount of memory to data object at
run time 1s

A. Insertion operator B. Extraction operator
C. new operator D. delete operator
Q.3 In the expression a=(b=20)+5; the value of variable 'a' will be
A.20 B. 25
C.5 D. 30
Q.4 Which is a short-hand assignment operator?
A += - =
C.*= D. All of these
Q.5 Selection structure is implemented by which control statement?
A. if statement B. if-else statement
C. switch statement D. All of these

Q.6 Loop structure is implemented by which control statement?
A. for statement B. while statement
C. do-while statement D. All of these

Very Short Answer Type Questions

Q.1 Define operator precedence.

Q.2 Define associativity of operators.

Q.3 What are the different types of control structures?
Q.4 What are expressions?

92)

Short Answer Type Questions

Q.1 What are the uses of scope resolution operator?

Q.2 What are the uses of new and delete operators?

Q.3 Explain how selection control structure is implemented in C++.

Essay Type Questions
Q.1 Explain different types of expressions with examples.
Q.2 Explain various types of looping statements.

Answer Key

o >
w
wN@!

3.B
6.D

Bo—=

Chapter 8

(93)

Functions in C++

8.1 Introduction

A function is a part of the program which is used to perform a task.
Dividing a program into functions is one of the major principles of structured
programming. The advantage of using functions is that it reduces the size of
program by calling and using them at different places in the program.
In C++, many new features are added to functions to make them more reliable
and flexible.

8.2 Function Prototype

The function prototype gives the information to the compiler about the
function like the number and type of arguments and the return type. The
function prototype is a declaration statement in the calling program and its
syntax is as follows:
type function name(arguments-list);
Example:

int sum(int a, int b);
In function declaration name of arguments are dummy variables and
therefore they are optional. The following statement
int sum(int, int);

is a valid function declaration.

8.3 Call-by-reference
In call-by-value parameter passing method the actual parameters in
calling program are copied to formal parameters in called function. The
changes made by the called function on formal parameters are not reflect in
calling program.
To make the changes in actual parameters in calling program, we use call-by-
reference parameter passing method.
For example
Program 8.1: Call-by reference
#include<iostream>
using namespace std;
int main()
{
int count=0;
void update(int &);
cout<<“count="<<count<<“\n”;

(94)

update(count);
cout<<“count="<<count;

return 0;

}

void update(int &x)

x=x+1;

}
The output of the program 8.1 would be:
count=0
count=1

In the above program, the variable x in update function becomes the alias of
the variable count in main function.

8.4 Return by reference
A function can also return a reference. For example
Program 8.2: Return by reference
#include<iostream>
using namespace std;
int main()
{
ntx=6,y=9;
int & min(int &, int &);
min(x,y)=-1;
cout<<“x="<<x<<*“\n”;
cout<<*“y="<<y;

return O;

}
int & min(int &a, int &b)
{

if(a<b)

returna;

else

returnb;

The output of the program 8.2 would be:

x=-1

y=9

In the above program, the return type of the function min is int &, the function

(95)

returns the reference to a or b. The function calling statement min(x,y); is a
reference to either x or y depending on their values.

8.5 Function overloading

Same function name but different argument list can be used to perform
different tasks, is known as function overloading. The correct function is to be
called depends on the number and type of arguments but not on the return type
of'the function.
Program 8.3 Function overloading
#include<iostream>
using namespace std;
int sum(int, int);
int sum(int, int, int);

int main()

{
cout<<“Sum of two numbers is ’<<sum(5,10);
cout<<“\n’’;
cout<<“Sum of three numbers is ’<<sum(10,20,30);
return O;

oo

intsum(int x, inty)

{
return(x+y);

j

intsum(inta, intb, int ¢)

{
return(a+b+c);

The output of the program 8.3 would be:
Sum of two numbersis 15
Sum of three numbers is 60

In the above program, the function sum() is overloaded two times. When we
pass two arguments to the function sum(), the function with two arguments is
invoked and when we pass three arguments to the function sum(), the function
with three arguments is invoked.

8.6 Inline function

When a function is called, control of execution is transferred from
calling function to called function then again go back to the calling function.
This is an overhead in program execution time. If the function body is small a

(96)

lot of time is spent in such overhead. The solution of this problem is inline
function. An inline function is expanded in line when it invoked. The compiler
replaces the function call statement with corresponding function body. To
make a function inline , write inline keyword with the function
declaration/definition statement.

For example

inline int sum(int x, inty)

{

return(x+y);

}

Important Points

e Afunctionisapart of the program which is used to perform a task.

e The function prototype gives the information to the compiler about the
function.
A function can also return a reference.
Same function name but different argument list can be used to perform
different tasks, is called function overloading.

e An inline function is expanded in line when it invoked in which the
compiler replaces the function call statement with corresponding
function body.

Practice Questions

Objective type questions:
Q.1 Whichis a valid function declaration

A.int fun(inta, intb); B. int fun(int, int);

C.BothAandB D. None ofthese
Q.2 In which parameter passing method the actual parameters are copied to
formal parameters of function?

A. Call- by-reference B. Call-by-value

C. Call-by-address D. None ofthese
Q.3 In function overloading, the correct function is to be called is NOT
depends on

A. Number ofarguments B. Type ofarguments

C. Returntype ofthe function D.None of these
Q.4 Same function name but different argument list can be used to perform
different tasks, is called

A.Functionoverloading B. Operator overloading

C. Class overloading D. None ofthese

Very Short Answer Type Questions
97)

Q.1 What is function?
Q.2 What is function overloading?
Q.3 What is inline function?
Short Answer Type Questions
Q.1 What is function prototype?
Q.2 What is difference between call-by-value and call-by-reference?
Q.3 What are advantages of functions in structured programming?
Essay Type Questions
Q.1 Write a program to swap two values by using call-by-reference
mechanism.
Q.2 Write a program to overload 'area()' function to compute the area
of circle and the area of rectangle.

Answer Key
1.C 2.B 3.C 4.A

Chapter 9

(98)

Classes and Objects

9.1 Introduction

Class is the most important feature of object-oriented programming
language. The concept of class is taken from the structure in C. It is a new way
of creating and implementing user-defined type.
In this chapter, we shall discuss the various concepts of classes and objects.

9.2 Defining class
A class is a user-defined data type that binds data and function together.
The class declaration includes the declaration of its data members and member
functions.
The syntax of the class declaration is :
class class name
v
private:
variable declaration;
function declaration;
public:
variable declaration;
function declaration,;

)5

The class members that are declared in private section can be accessed only by
the members of that class. The class members that are declared in public
section can be accessed from outside the class also. By default, the members of
aclass are private. The data hiding by using private declaration is the important
feature of object-oriented programming.

A simple class example

class point

{

ntx,y; // private by default
public:

void input(int a, intb);

void output(void);
}3

Creating objects

Like basic data type, we can create the variables of class type. These variables
are called objects.

For example

99)

point p, q;

In the above statement, two objects p and q of class type point are created.
Accessing class members

The public members of the class can be accessed from outside the class by
using the object of that class.

The syntax for accessing a public member function is:

object name.function name(arguments list);

For example, the function call statement

p.input(10,20);

assign the value 10 to x and 20 to y of the object p by defining the input()
function.

The statement p.x=10; is illegal, since x is declared private and it can only
accessed by the member functions directly and not by the object from outside
the class.

9.3 Defining member functions

The member function of a class can be defined within the class and
outside the class also.
Inside the class
The function declaration is replaced by the actual definition of the member
function inside the class. The function defined inside the class are treated as
an inline function.
For example

class point
o
mntx,y;
public:
void input(int a, intb)
{
X=a;
y=b;
void output(void)
cout<<“x="<<x<<*“\n”;
cout<<"y="<<y;
}

¥
Outside the class

The member functions declared in a class must be defined separately outside
the class. The format for member function definition is:

(100)

return_type class_name:: function name(arguments)

{
b

The class name indicates the function belongs to this particular class.
For example
class point

(.
mntx,y;

public:
void input(int a, intb);
void output(void);

function body

¥

void point :: input(int a, intb)

void point :: output(void)

cout<<“x="<<x<<*“\n”;
cout<<*y="<<y;
}
Program 9.1 A simple program with class
#include<iostream>
using namespace std;
class point

o
ntx,y;

public:
void input(int a, intb);
void output(void);

s

void point :: input(int a, intb)

X=a;
y=b;

b .

void point :: output(void)

{

cout<<“x="<<x<<*“\n”;

(101)

cout<<*y="<<y;

int main()

{
pointp;
p.input(5,10);

p-output();
return O;

}

The output of the program 9.1 would be:
x=5
y=10

9.4 Access Modifiers

public and private keywords are called access modifiers. Since, they control
the access mechanism of members of a class.

e The public member of a class can be accessible from outside the class.
Generally, member function of a class are kept in public section of the
class.

e The private members of a class can't be accessible from outside the
class even with the object of that class. Generally, variables are kept in
private section of the class.

9.5 Arrays within class

Arrays can act as a data member of a class.
Program 9.2 Array within class
#include<iostream>
using namespace std;
class data
{
inta[5];
public:
void getdata(void);
void showdata(void);

(102)

3
void data :: getdata(void)

{
cout<<“Enter the elements of array\n”;
for(int1=0; 1<5; 1++)
{
cin>>a[i];
h
}
void data :: showdata(void)
{
cout<<“Array elements are\n”;
for(int1=0; 1<5; 1++)
cout<<a[i]<<“\t”;
}
intmain()
{
datad;
d.getdata();
d.showdata();
return O;
}

The output of the program 9.2 would be:
Enter the elements of array

6 5 9 8 1

Array elements are

6 5 9 8 1

9.6 Static Data Members

The data members of a class can be declared as a static. The characteristics of
static data members are:
e Itsinitial value is set to zero, when first object of'its class is created.
e Only single copy of the data member is created and it is shared by all the
objects ofthe class.
e Since it is associated with the entire class, it is also called class

(103)

variables.

Program 9.3 Static Data Members

#include<iostream>
using namespace std;
class data
{ .
static int x;
inty;
public:
void getdata(inta)
y=a;
X++;

b

void show_x(void)

{
cout<<“x="<<x<<“\n”;
}
intdata::x; //static member definition
int main()
{
datadl,d2; //xisinitializedto zero
d1.show x();
d2.show_x();
dl1.getdata(10);
d2.getdata(20);
cout<<“Afterreading data”<<*\n”;
d1.show x();
d2.show x();
return O;
H
The output of the program 9.3 would be:
x=0
x=0
Afterreading data
x=2
x=2

The static data member X is initialized to zero when objects are created. The
value of x is incremented by one each time the function getdata() is called.

(104)

Since the static variable x is shared between the two objects, the value of x is
printed 2 each time. The initial value can be assigned to static data member,
when it defined outside the class. For example:

int data :: x=5;

Object d1 Object d2

y=10 y=20

x=2

Fig. 9.1 Sharing of a static data member
9.7 Static Member Function

A member function declared with static is called static member function. The
properties of static member functions are:
e [t can access only other static data members and member functions in
the same class.
e They are invoked using the class name.
Program 9.4: Static Member Function
#include<iostream>
using namespace std;
class test
(.
ntx;
staticinty;
public:
void set xy(inta)

X=a;
yt
void show_x(void)

{

COut<<“X:’,<<X<<“\n’,;

(105)

staic void show_y(void)

{

}
I8
mttest::y;
int main()
{
testtl,t2;
tl.set xy(10);
t2.set xy(20);
tl.show_ x();
t2.show x();
test::show_y(); // calling static function
return O;

}

The output of the program 9.4 would be:
x=10

x=20

y=2

cout<<*‘y="<<y;

9.8 Friend function
As we know that the private members of a class can't be accessed from
outside the class. A friend function can access the private data of a class
through the object of that class. A function that is common to two classes , we
can make this as a friend to these two classes. The function is declared with
keyword friend. A friend function has following characteristics:
e Itisinvoked like anormal function, not with the any object of the class.
e [t can only access the members of the class by using the object of that
class.
e Jtcanbedeclared anywhere in the class.
e Generally, it has objects as arguments.
Program 9.5: Friend function
#include<iostream>
using namespace std;
class test
(.
nt x,y;
public:
void getdata(inta, intb)

(106)

friend int sum(testt);
intsum(testt)
return(t.x+t.y);

intmain()

{
testq;
q.getdata(10,20);
cout<<“Sum="‘<<sum(q);
return 0;

The output of the program 9.5 would be:
Sum=30

Friend class

A member function of a class can be friend function of another class.
For example

classA

void fun(); //member function of A

2

class B

{

Note that the friend function in class B is declared with the class name and
scope resolution operator.

The function fun() is a member function of class A and friend function of class
B.

If all the member function of one class are declared as friend functions in
another class, then the class is called friend class. For example

class C

{

(107)

friend class A; //All member functions of class A are friend to C

Program 9.6: Using friend function to find maximum between data
members of two classes

#include<iostream>
using namespace std;
class second; //forward declaration
class first
o
ntx;
public:
void set_value(inta)
{
X=a,
b
friend void max(first, second);
}5
class second
o
nty;
public:
void set_value(intb)
{
y=b;
friend void max(first, second);
¥
void max(first f, second s)
{
if(f.x>s.y)
cout<<“Maximumis ’<<f.x;
else
cout<<“Maximum is ’<<s.y;
§
int main()
{
firstA;
second B;

A.set_value(10);

(108)

B.set value(20);
max(A,B); //calling friend function
return O;

}

The output of the program 9.6 would be:
Maximum is 20

9.9 Returning Objects

In the previous section, we saw that the friend functions receive objects as
arguments. A friend function can return object also.

Program 9.7: Returning object

#include<iostream>
using namespace std;
class vector
int V[3];
public:
void set_vector(void)
{
cout<<“Enter three numbers\n”;
for(inti=0; 1<3; i++)
cin>>V[i];
void display(void)
for(inti=0;1<3; 1++)
cout<<V[i]<<*,”;
}
friend vector sum(vector, vector);
15
vector sum(vector p, vector q)
{
vectorr;
for(int j=0;j<3;j++)
r.V[jl=p.-VljI+a.V[jl;
returnr;
}
int main()
{

vectorvl, v2,v3;
vl.set vector();

(109)

v2.set_vector();
v3=sum(v1,v2);
cout<<“First vectoris:”;
vl1.display();

cout<<“\n”;
cout<<“Second vectoris:”;
v2.display();

cout<<“\n’’;
cout<<“Resultant vectoris:”;
v3.display();

return 0;

}

The output of the program 9.7 would be:
Enter three numbers

3 -2 5

Enter three numbers

-8 6 7

First vectoris: 3,-2,5,

Second vectoris: -8,6,7,

Resultant vector is: -5,4,12

9.10 Pointers to members

We can assign the address of a class member to a pointer
For example
class X
(.

mnta;

public void show();
K
We can define pointer to member as:

int X:: *p=&X::a;

X::* means “pointer-to-member of X'
&X::ameans “address of the member a of the class X”
The statement int *p=&a; will not work;
The pointer p can be used to access the member a inside member function or
friend function.
For example
void show()

{

Xx; // object created

(110)

cout<<x.*p; //display valueofa
cout<<x.a; //sameasabove

}

We can also set a pointer to member function of a class. The member function
can be invoked using dereferencing operator (.*).

For example

Xx; // object created

void (X::*pf)()=&X::show;

x.*pH0); //invoke show()

Here, pf is a pointer to member function show().

Important Points

A class is auser-defined data type that binds data and function together.
By default, the members of a class are private.
The member function of a class can be defined within the class and
outside the class also.
public and private keywords are called access modifiers.
The data members of a class can be declared as a static.
A member function declared with static is called static member
function.

e A friend function can access the private data of a class through the
object of thatclass.

e We canassign the address of a class member to a pointer.

Practice Questions

Objective type questions:
Q.1 User-defined data type that binds data and function together is called

A. Object B.Class
C.Array D. Pointer
Q.2 By default, the members of a class are
A. public B. private
C. protected D. None ofthese
Q.3 Whichisan Access Modifier?
A. public B. private
C.BothAandB D. None ofthese

Q.4 Which is true with respect to static data members?
A. Itsinitial value is set to zero, when first object of its class is created
B. Only single copy of the data member is created.
C. Also called class variables.

(111)

D. All of these
Q.5 Which is true with respect to static member functions?
A. Declared with static keyword
B. Access only other static data members and member functions in the
class.
C. Invoked using the class name.
D. All of these
Q.6 Which is true with respect to friend functions?
A.Invoked like a normal function.
B. Declared anywhere in the class.
C. Generally, it has objects as arguments.
D. All ofthese

Very Short Answer Type Questions
Q.1 What is class?
Q.2 What is object?
Q.3 What is friend class?

Short Answer Type Questions
Q.1 Differentiate between private and public access modifiers.
Q.2 What are the characteristics of static data members?
Q.3 What are the properties of static member functions?

Essay Type Questions
Q.1 What is friend function? Write its characteristics.
Q.2 Write a program to create a class 'complex’, that represents a
complex number and define the member functions to compute
addition and subtraction of two complex numbers.
Q.3 Write a program to swap data members of two classes using
friend function.

Answer Key

B 3.C
D 6.D

=
o w

Chapter 10

(112)

Constructors and Destructors
10.1 Introduction

In the examples of classes, we have used member functions like input(),
getdata() etc. to initialize the private data members of a class. The function call
statements are used with the objects that have already been created. The
functions are unable to initialize data members at the time of creation of their
objects.

The aim of C++ is that the class behaves like a basic data type. A class type
variable (object) should be initialized when it is declared in the same way as
basic data type variables.

In this chapter, we will discuss a special member function called constructor
which is used to initialize objects when they are created. An another member
function destructor that destroys the object when they are no longer required.

10.2 Constructors
A constructor is a special member function that is used to initialize the
objects of its class. It is called automatically when the objects of its class are
created.
Special Characteristics of constructor functions are:
e Itsnameis same as class name.
e Itmustbedeclared in public section.
e Invoked automatically when objects are created.
e Do nothave any return type, not even void and hence, it can't return any
value.
e Jtcan'tbeinherited.
We can'taccess their addresses.
For example
class point

o
ntx.,y;
public:
point(void); //constructor declared

s
point :: point(void) //constructor defined
{
x=0;
y=0;
}

(113)

When we declare the object of the class point. For example

point p;

The constructor in the class is automatically called and initialize the private
data members x and y to zero for the object p.

A constructor with no arguments is called default constructor. If no such
constructor is defined in a class, then compiler provides a default constructor
to create the object of the class.

10.3 Parameterized constructors
The constructors that receive arguments are called parameterized
constructors. For example

class point

(.
ntx,y;

public:
point(inta, intb); //parameterized constructor
{
}

s

point::point(int a, intb)
X=a,
y=b;

}

The parameterized constructors can be called in two ways:

point p=point(10,20); //explicitcall
This statement create an object p and passes the values 10 and 20 to it.
pointp(10,20); /implicit call
This statement works same as above statement.
The constructor functions can also be defined as inline functions. For example
class point

{
ntx,y;
public:
point(int a, int b)
{
X=a;
y=b;

(114)

The arguments of a constructor can be of any type except the class to which
it belongs. For example
class X

X(X);

3

isillegal.

But a constructor can accept a reference to its own class as an argument. For
example

class X

is valid and the constructor is called copy constructor.
Program 10.1: Parameterized constructor

#include<iostream>
using namespace std;
classrectangle
{
int length;
int breadth;
public:
rectangle(inta, intb)
length=a;
breadth=b;
void area()

cout<<“‘Area="<<length*breadth;

(115)

B

int main()

{
rectangle r(5,10);
return 0;

}

The output of the program 10.1 would be:
Area=50

10.4 Multiple constructors in a class
A class can have more than one constructors and it is called constructor

overloading.
Program 10.2: Overloaded constructors
#include<iostream>
using namespace std;
class point
(.
ntx.,y;
public:
point()//no argument constructor
{
x=0;
y=0;
point(inta) //one argument constructor
{x=y=a;}
point(intm, intn) //two arguments constructor
{
X=m;
y=n;
void show()
{

cout<<“x="<<x<<*“\n”;
Cout<<“y:’,<<y<<“\n’,;

}

B

int main()

{
pointpl;
point p2(5);

pointp3(7,11);

(116)

cout<<“Coordinates of pl are\n”;
pl.show();

cout<<“Coordinates of p2 are\n”;
p2.show();

cout<<“Coordinates of p3 are\n”;
p3.show();

return 0;

}

The output of the program 10.2 would be:
Coordinates of p1 are

x=0

y=0

Coordinates of p2 are

x=5

y=5

Coordinates of p3 are

x=7

y=11

In the above program the point has three constructors. First is no argument
constructor and it initializes the object with zero values. Second constructor
receives one value as an argument and initialize the object with this value.
Third constructor receives two arguments and initialize the object with these
two values.

10.5 Constructor with default arguments

The constructor can take default arguments. For example

point(inta, int b=0);

Note that default arguments are given from right to left. The default value of
argument b is zero. Then, the statement

point p(5);

assign the value 5 to aand 0 to b(by default). But the statement

point(7,11);

assign the value 7 to a and 11 to b because when actual parameters are given,
they overrides the default arguments.

If one argument constructor is also present with this constructor , then the
calling statement

point p(5);

is unable to decide which constructor is to be called and an ambiguity is
created. The compiler will generate an error message.

10.6 Dynamic initialization of objects

(117)

The initial value of an object can be provided at the run time. The advantage of
dynamic initialization is that we can give different input formats by using
constructor overloading.
Program 10.3: Dynamic initialization of objects
#include<iostream>
using namespace std;
class shape
{
float length, breadth;
float radius;
float area;
public:
shape() {}
shape(floatr)
{
radius=r;
area=3.14*r*r;

}

shape(float 1, floatb)

{
length=I;
breadth=b;
area=length*breadth;

}
void display()
{
cout<<“Area="<<area<<“\n”;

}

I

intmain()

{
shape circle, rectangle;
floatr, 1, b;
cout<<“Enter the radius of circle\n”;
cin>>t;
circle=shape(r);
cout<<“Enter the length and breadth of rectangle\n”;
cin>>1>>b;
rectangle=shape(l,b);
cout<<*“Areaofcircle\n”;
circle.display();
cout<<*‘Area ofrectangle\n”;

(118)

rectangle.display();
return 0;

}

The output of the program 10.3 would be:
Enter the radius of circle

5

Enter the length and breadth of rectangle
17 8

Area of circle

78.5

Areaofrectangle

136

10.7 Copy constructor
A constructor that is used to declare and initialize object from another
object of the same class is known as copy constructor. A copy constructor takes
areference to an object of the same class as an argument.
Program 10.4: Copy constructor
#include<iostream>
using namespace std;
class product

{
int code;

public:
product(){} //defaultconstructor
product(int x)//parameterized constructor

{
code=x;
product(product &y) //copy constructor
code=y.code; //copy the value
}
void display(void)
{
cout<<code;
h
B
int main()
{
productp1(10);

(119)

productp2(pl); //copy constructor called
product p3=p1; //again copy constructor called
cout<<“Code ofpl:”;
pl.display();
cout<<*“\nCode of p2:”;
p2.display();
cout<<*“‘nCode of p3:”;
p3.display();
return 0;
}
The output of the program 10.4 would be:
Code of p1:10
Code of p2:10
Code of p3:10

Note: When no copy constructor is defined in the program, the compiler
supplies its own copy constructor.

10.8 Destructors
A special member function of the class that is used to destroy the
objects that have been created by constructor.
Special characteristics of destructors:
e Itsname is same as class name but preceded by tilde(~).
e Itnevertakes any argument and does not return any value.
e Itisinvoked implicitly by the compiler upon exit from the program or
block or function.
The following program shows the destructor is invoked implicitly by the
compiler.
Program 10.5: Implementation of Destructor
#include<iostram>
using namespace std;
class sample

sample() // Constructor

cout<<“Object created\n”;

}

~sample() // Destructor

cout<<*Object destroyed”;

}
|

(120)

int main()

{
samples;

return O;

}

The output of the program 10.5 would be:
Object created
Object destroyed

The use of destructors are to free the allocated memory to objects at run time.
So, that the freed memory can be reuse for another program or objects. The
memory is allocated to an object by using new operator in constructor function
and de-allocated by using delete operator in destructor function.

Program 10.6: Memory de-allocation of an object using destructor.
#include<iostream>

using namespace std;

class sample

{
char *t;
public:
sample(int length)
t=new char|[length];
cout<<“Character array of length”<<length<<*created”;
~sample()
deletet;
cout<<“\n Memory de-allocated for the character array”;
}
I
int main()
sample s(10);
return 0;
h

The output of the program 10.6 would be:
Character array of length 10 created

(121)

Memory de-allocated for the character array
Important Points

e A constructor is a special member function that is used to initialize the
objects of'its class.

e The arguments of a constructor can be any type except the class to
which it belongs.
A constructor can accept areference to its own class as an argument.
A constructor that is used to declare and initialize object from another
object of the same class is known as copy constructor.

e When no copy constructor is defined in the program, the compiler
supplies its own copy constructor.

e A special member function of the class that is used to destroy the
objects that have been created by constructor is called destructor.

Practice Questions
Objective type questions:
Q.1 Which s true with respect to constructor?
A.Itsname is same as class name.
B. It must be declared in public section.
C. Invoked automatically when objects are created.
D. All of these
Q.2 Constructors that take arguments are called
A. Default constructors B. No argument constructors
C. Parameterized constructors D. None of these
Q.3 A constructor that is used to declare and initialize object from another object of
the same class is known as
A. Default constructor B. Copy constructor
C. Parameterized constructor D. None of these
Q.4 Which s true with respect to destructors?
A. Its name is same as class name but preceded by tilde(~).
B. Itnever takes any argument and does not return any value.
C. It is invoked implicitly by the compiler upon exit from the program or
block or function.
D. All of these

Very Short Answer Type Questions
Q.1 What are constructors?
Q.2 What are parameterized constructors?
Q.3 What is constructor overloading?

Q.4 What is copy constructor?

(122)

Short Answer Type Questions
Q.1 What are the characteristics of constructors?
Q.2 What are destructors? Write its properties.
Q.3 What are the uses of destructors?

Essay Type Questions
Q.1 Explain constructor with default arguments.

Answer Key

1.D 2.C 3.B 4.D

Chapter 11

(123)

Operator Overloading
11.1 Introduction

Operator overloading is an important feature of C++ language. Using
this feature, we can add two variables of user-defined types with the same way
as we do with basic data types.

The mechanism of giving special meanings to an operator for a data type is
known as operator overloading.
All the operators in C++ can be overload except the following:

e (Class member access operators (., .*)
e Scoperesolution operator (::)
e Size operator (sizeof)
e Conditional operator (?:)
When we overload an operator, its original meaning remains same. For

example, if we overload + operator to add two matrices, can still be used to add
two numbers.

11.2 The operator function

To give additional meaning to an operator, we use a special function
called operator function. The prototype of the operator function s :
return_type class name :: operator op(arguments list)

function body
h

Where operator is a keyword and op is an operator to be overload.

Operator function must be either member function or friend function ofa class.
The basic difference between them is that member function takes no argument
for unary operators and one argument for binary operators while friend
function takes one argument for unary operators and two arguments for binary
operators.

11.3 Overloading unary operators using member function
Let us consider the postfix increment operator (++). It takes just one

operand and increment its value by one , when applied to basic data types. We

will overload this operator so that it can be applied to an object and it

increments each data item of that object by one.

Program 11.1 Overloading postfix increment operator

#include<iostream>

using namespace std;

class point

(124)

o
Intx.,y;
public:
void getdata(inta, intb)

X=a;
y=b;

void show(void)
{
cout<<*x="<<x;
Cout<<“y:aa<<y<<“\naa;
h
void operator+-+(int)
{
X++;
yt+

3

int main()
{
pointp;
p.getdata(5,8);
cout<<“p:”;
p.show();
pt+; // invoke operator function
cout<<“p++:;
p.show();
return O;

}

The output of the program 11.1 would be:
p:x=5y=8
pt+:x=6y=9

The int in the operator function is used to indicate that we are overloading
postfix increment operator not prefix increment operator.

11.4 Overloading unary operator using friend function

Let us consider prefix decrement operator (--) that takes one operand and
decrement the value of operand by one , when applied to basic data types. We

(125)

will overload this operator so that it can be applied to an object and decrement
the value of each data of that object by one.

Program 11.2: Overloading prefix decrement operator

#include<iostream>

using namespace std;

class point

o
ntx.,y;
public:
void getdata(inta, intb)

X=a;
y=b;

void show(void)

cout<<“x="<<x;
Cout<<“y=”<<y<<“\n”;

friend void operator--(point &s)
{

S.x=s.x-1;

s.y=s.y-1;

55

int main()
{
pointp;
p.getdata(7,10);
cout<<“p:”;
p.show();
- p;
cout<<*“--p:”;
p.show();
return O;

}

The output of the program 11.2 would be:
p:x=7y=10
pH+:x=6y=9

(126)

Note that the argument in operator function is passed by reference. If we pass
argument by value it will not work because the changes made in operator
function will not reflect in main function.
We can't overload the following operators using friend function.
e =Assignment operator
() Function call operator
[]Subscripting operator
->Class member access operator

11.5 Overloading binary operators using member
function

Let us consider the binary + operator that takes two operands and add
them, when applied to basic data types. We will overload this operator to add
two matrices.
Program 11.3: Overloading binary + operator
#include<iostream>
using namespace std;
class matrix

{
intmat[2][2];
public:
void getmatrix(void);
matrix operator+(matrix);
void showmatrix(void);
%

void matrix::getmatrix(void)

for(inti=0; 1<2; i++)
for(int j=0; j<2; j++)
{

cout<<“Enter the number:”;
cin>>mat[i][j];

}

matrix matrix::operator+(matrix m)
{
matrix temp;
for(inti=0; 1<2; i++)
for(intj=0; j<2;j++)
temp.mat[i][j]=mat[i][j]+m.mat[1][j];
return temp;

}

(127)

void matrix::showmatrix(void)

{

for(int1=0;1<2; 1++)

for(intj=0; j<2;j++)
cout<<mat[i][j]<<*“\t”;
cout<<‘“\n”;
}
}

intmain()

{
matrixml,m2,m3;
ml.getmatrix();
m2.getmatrix();
m3=ml+m2;
cout<<“matrixml:\n”;
m1.showmatrix();
cout<<“matrix m2:\n”’;
m2.showmatrix();
cout<<“Resultant matrix:\n”;
m3.showmatrix();

return O;

}

The output of the program 11.3 would be:
Enetr the number: 2
Enetr the number: 3
Enetr the number: 1
Enetr the number: 4
Enetr the number: 6
Enetr the number: 7
Enetr the number: 8
Enetr the number: 9

matrixml:

2 3

1 4

matrix m2:

6 7

8 9
Resultant matrix:
8 10

(128)

9 13

In the above program the operator function takes only one argument of matrix
type and that is second operand of binary + operator. The first operand m1 is
used to invoking the operator function. So, the data members of m1 are directly
accessed by the operator function. The following statement

m3=ml+m?2;

isequivalentto

m3=m]l.operator+(m2);

For binary operators, the left-side operand is used to invoke the operator
function and the right-side operand is passed as an argument.

11.6 Overloading binary operators using friend function
The following program overload the binary + operator to add two complex
numbers using friend function.

Program 6.4: Overloading binary + operator using friend function
#include<iostream>

using namespace std;
class complex
{
float real;
float imag;
pubic:
void input(float x, float y)
{
real=x;
imag=y;

friend complex operator + (complex a, complex b)
{
complex c;
c.real=a.real+b.real;
c.imag=a.imag+b.imag;
return c;

void show(void)

{
cout<<real<<*+i”<<imag<<“\n”;
}
oo
int main()
{

complex cl,c2,c3;

(129)

cl.input(1.6,6.2);
c2.input(2.3,3.4);
c3=cl+c2; //invoke operator function
cout<<“C1=";
cl.show();
cout<<“C2=";
c2.show();
cout<<*“C3=";
c3.show();
return 0;
}
The output of the program 11.4 would be:
C1=1.6+i6.2;
C2=2.3+i3.4;
C3=3.9+19.6;
In the above program, the operator function takes two arguments of
complex type explicitly and return a resultant complex number. The
following statement
c3=cl+c2;
is equivalent to
c3=operator+(cl,c2);

Important Points

e The mechanism of giving special meanings to an operator for a data
type is known as operator overloading.
When we overload an operator, its original meaning remains same.
To give additional meaning to an operator, we use a special function
called operator function.

e Operator function must be either member function or friend function of
aclass.

Practice Questions

Objective type questions:
Q.1 Operator that can be overload is
A. Scope resolution operator (::)
B. Class member access operators (., . *)
C. Binary plus operator (+)
D. Conditional operator (?:)
Q.2 To overload a binary operator, operator function as member function
will take

(130)

A.Two arguments B. One argument

C. Zero argument D. None ofthese

Q.3 To overload a unary operator, operator function as friend function will take
A.Two arguments B. One argument
C. Zero argument D. None ofthese

Q.4 Operator that can't be overload using friend function.
A. = Assignment operator B.() Function call operator
C. [] Subscripting operator D. All of these

Very Short Answer Type Questions
Q.1 What is operator overloading?
Q.2 Write the prototype of the operator function.
Q.3 What are the operators that can't be overloaded?

Short Answer Type Questions
Q.1 Explain the difference between the operator function implemented
as member function and friend function.

Essay Type Questions
Q.1 Write a program to overload unary minus operator to negate an
object of a class using friend function.
Q.2 Write a program to overload binary plus operator to concatenate
two strings using member function.

Answer Key

1.C 2.B 3.B 4.D

Chapter 12

(131)

Inheritance
12.1 Introduction

Reusability is an important feature of C++. The existing classes are
used to create new classes, this mechanism is called inheritance. Using this
feature the programmer can save time, money and effort. The existing class is
called base class or parent class or super class and the new class is called
derived class or child classes or subclass.

12.2 Defining derived classes
The syntax of derived class is:
class derived-class-name : visibility-mode base-class-name

{
35

The visibility-mode can be either private, protected or public. By default, the
visibility-mode is private. The visibility-mode specifies whether the features
ofthe base class are privately, protectedly or publically derived .

If the base class is privately inherited by the derived class , the public and
protected members of the base class become private members of the derived
class. The private members of the base class are never inherited .

If the base class is protectedly inherited by the derived class, the protected and
public members of the base class become protected members of the derived
class.

If the base class is publically inherited by the derived class, the protected
members of the base class become protected members of the derived class and
the public members of the base class become public members of the derived
class.

members of derived class.

12.3 Single Inheritance

In single inheritance, there is one base class and one derived class.

Base Class

\

Derived Class

Fig. ritance
Program 12.1: Single inheritance

(132)

#include<iostream>

using namespace std;
class data
{
protected:
intx,y;
public:
void getdata(inta, intb)
{
X=a;
y=b;
void showdata(void)
{

COut<<“X:’,<<X<<“\n’,;
Cout<<“y:’,<<y<<“\n’,;

}
s ‘ ‘
class maximum: public data
b
public:
void max(void)
(.
if(x>y)
cout<<“Maximum is:"<<x;
else
cout<<“Maximum is:”’<<y;

s
int main()

maximumm;
m.getdata(4,9);
m.showdata();
m.max();
return O;
§
The output of the program 12.1 would be:
x=4
y=9
Maximum is: 9

(133)

In the above program, the base class 'data’ has two protected data members x

and y. These two data members can be accessed by the base class and its

immediate derived class, but not outside to these two classes. The derived class

'maximum' compute maximum between these two data members. After public

derivation of the base class, the derived class has the following members.
Derived class 'maximum’

Protected section:
X,y

Public section:
getdata()
showdata()
max()

Fig. 12.z viempers ot aertved class ‘maximum’

12.4 Multilevel inheritance
A class can be derived from another derived class.

Level 0

Base class

}

Derived

Level 1

class/Intermedia
te base class

)

Derived class

Level 2

Fig. 12.3 Multilevel inheritance
There can be any number of levels in multilevel inheritance. The following
program is an example of multilevel inheritance.
Program 12.2: Multilevel inheritance
#include<iostream>
using namespace std;

(134)

class datal

{
protected:

ntx;
public:
void get x(inta)

X=a,
void show_x(void)
{

}

COut<<“X:,,<<X<<“\n’,;
}s

class data2:public datal
{

protected:
inty;
public:
void get y(intb)
y=b;
void show_y(void)

Cout<<“y=”<<y<<“\n”;

h
I
class addition: public data2
{
intz;
public:
void sum(void)

{
Z=x+y;

void show_z(void)

cout<<“z="<<z<<“\n”;

(135)

}s

intmain()

{
additiona;
a.get x(4);
a.get_y(7);
a.sum();
a.show x();
a.show y();
a.show_z();

return 0;

}

The output of the program 12.2 would be:

x=4

y=71

z=11

In the above program, the derived class 'data2' is derived from the base class
'datal' and this is the first level of derivation . The protected data member x of
base class 'datal' become protected in derived class 'data2'. After first level of
derivation, the derived class 'data2' has the following members.

Derived class 'data2’

Protected section:
X,y

Public section:
get x()
show_x()

get y()
show_y()

Fig. 12.4 Members of derived class "data2’
The class 'addition' is derived from intermediate base class 'data2'. After this
second level of derivation the derived class 'addition' has the following
members.

Derived class 'addition’

(136)

Private section:
z

Protected section:
X,y

Public section:
get x()

show x()
get_y()
show_y()
sum()

Fig.

Z.J IVICIIIUETS OT UCITVEU CIass auuaruon

12.5 Multiple Inheritance

When a class inherits the features of two or more classes, is known as

multiple inheritance.

Base class-1

Base class-2

y

Derived class

Base class-n

Fig. 12.6 rxarapr=iheritance

The syntax of derived class with multiple base classes is:

class derived_class : visibility Base class-1, visibility Base class-2,

{

Members of derived class

)5

The following program is an example of multiple inheritance.

Program 12.3: Multiple inheritance

#include<iostream>

(137)

using namespace std;

class B1
{
protected:

int x;

public:

void get x(int a)
X=a,

}

s

class B2

{
protected:

int y;

public:

void get y(int b)
y=b;

}

s ‘ _
class D : public B1, public B2
(.

nt z;

public:

void multiply(void)
z=x*y;

b |

void display(void)

{
cout<<“x="<<x<<“\n”;
COut<<“y:’,<<y<<“\n’,;
COut<<“Z:,,<<Z<<“\n’,;

h

o
int main()

D d;

d.get x(5);

d.get y(3);

d.multiply();

(138)

d.display();

return 0;
;
The output of the program 12.3 would be:
x=5
y=3
z=15
In the above program, the derived class 'D' inherits the members of base
classes 'B1' and 'B2'. The derived class 'D' has the following members after
this derivation.

Derived class 'D’

Private section:
z

Protected section:
X,y

Public section:
get x()

get y0
multiply()

display()

=4

Fi

12.6 Hierarchical inheritance

When a base class is inherited by two or more derived classes, is known as
hierarchical inheritance. As an example figure 12.8 shows hierarchical
classification of persons in a school.

Person

Teacher Student

g rerororwdample of hierarchicar mmerrtance
Program 12.4: Hierarchical inheritance

(139)

#include<iostream>
#include<string.h>
using namespace std;
class person

{
protected:
char name[20];
int age;
public:
void get person(const char *n, int a)
{
strcpy(name,n);
age=a;
b
void show_person(void)
{
cout<<“Name:”’<<name<<“\n"’;
cout<<*“Age:”<<age<<“\n”;
}
K
class teacher : public person
{
char post[10];
public:
void get post(const char *p)
{
strepy(post,p);
}
void show_teacher(void)
{
show_person();
cout<<*“post:”’<<post<<‘n”;
}
s
class student : public person
{

int standard;

(140)

public:
void get standard(int s)

{
standard=s;
j
void show_student(void)
{
show_person();
cout<<“Standard:”’<<standard<<‘“\n”’;
j
}s
int main()
{
teacher t;
t.get person(“Ram”,30);
t.get post(“TGT”);
student s;
s.get_person(“Shyam”,17);
s.get_standard(12);
t.show teacher();
s.show_student();
return 0;
h
The output of the program 12.4 would be:
Name: Ram
Age: 30
Post: TGT
Name: Shyam
Age: 17

Standard: 12

12.7 Hybrid inheritance

The combination of two or more forms of inheritance is known as hybrid
inheritance. As an example figure 12.9 shows hybrid inheritance which is the
combination of multilevel inheritance and multiple inheritance.

(141)

arithmetic

v
addition subtract
| /
result

Fig.12.9 An example of hybrid inheritance

Program 12.5: Hybrid inheritance
#include<iostream>
using namespace std;
class arithmetic
{
protected:

int numl, num2;
public:

void getdata(void)

cout<<“For Addition:”;
cout<<“\nEnter the first number: ;
cin>>numl;

cout<<“\nEnter the second number: ”’;
cin>>num2;

35

class addition:public arithmetic
{
protected:
int sum;
public:
void add(void)
{

}

sum=num/l-+num?2;
35

class subtract

{
(142)

protected:
int n1,n2,diff;

public:
void sub(void)
cout<<“\nFor Subtraction:”;
cout<<“\nEnter the first number:”;
cin>>nl;
cout<<“\nEnter the second number:”;
cin>>n2;
diff=n1-n2;
J
J; o .
class result:public addition, public subtract
public:
void display(void)
{
cout<<“\nSum of "<<num1<<* and "<<num2<<“= ’<<sum;
cout<<“\nDifference of "<<nl<<* and "<<n2<<"“= "<<diff;
J
35
int main()
{
result z;
z.getdata();
z.add();
z.sub();
z.display();
return 0;
}
The output of the program 12.5 would be:
For Addition:

Enter the first number: 5

Enter the second number: 7

For Subtraction:

Enter the first number: 10

Enter the second number: 3
Sum of 5 and 7 1s 12
Difference of 10 and 3 1s 7
12.8 Virtual Base classes

(143)

Consider a hybrid inheritance in which three forms of inheritance
which are multilevel, multiple and hierarchical inheritance are involved. This
i1s shown in figure 12.10 . The class 'TA'(Teacher Assistant) has two direct base
classes 'teacher' and 'student' which have a common base class "person'. The
class "TA'"inherits the features of 'person' via two different paths. This situation
creates a problem that all public and protected members of 'person' are
inherited into 'TA' twice, first via 'teacher' and second via 'student'. This form
ofinheritance creates an ambiguity and should be avoided.

person

As virtual base class As virtual base class

teacher student

TA

Fig.12.10 Virtual base class
This ambiguity can be resolved by making the common base class as virtual
base class while declaring the direct base classes as shown in below.
class person

s
class TA: public teacher, public student

(144)

When a class is declared as a virtual base class, only one copy of the all public
and protected members of that class is inherited.

12.9 Abstract classes

If same function name is used in both base and derived classes, the
function in base class is declared as virtual that is called a virtual function. A
virtual function with empty body is called pure virtual function. A class having
at least one of its member functions as pure virtual function is known as
abstract class. It is notused to create objects. Itisused only to act as a base class
to be inherited by other classes. The pure virtual function must be defined by
the class which is derived from the abstract base class. The following program
is an example of abstract base class.
Program 12.6: Abstract base class
#include <iostream>
using namespace std;
class Shape
{
protected:

int width;
int height;
public:
virtual int area() = 0; // pure virtual function
void getdata(int w, int h)

{
width=w;
height=h;
}
¥

class Rectangle: public Shape

public:
int area()

(145)

return (width * height);

}
¥

class Triangle: public Shape

{

public:

int area() {
return (width * height)/2;

}

9

int main(void)

Rectangle Rect;
Triangle Tri;

Rect.getdata(5,7);

cout << “Area of Rectangle :” << Rect.area() <<*\n”;
Tri.getdata(6,7);
cout << “Area of Triangle :”<< Tri.area() <<*\n”;
return 0;

}

The output of the program 12.6 would be:
Area of Rectangle: 35
Area of Triangle: 21

Important Points

The existing classes are used to create new classes, this mechanism is
called inheritance.

By default, the visibility-mode is private.

In single inheritance, there is one base class and one derived class.
There can be any number of levels in multilevel inheritance.

When a class inherits the features of two or more classes, is known as
multiple inheritance.

When a base class is inherited by two or more derived classes, is known
as hierarchical inheritance.

The combination of two or more forms of inheritance is known as
hybrid inheritance.

When a class is declared as a virtual base class, only one copy of the all
public and protected members of that class is inherited.

(146)

e A class having at least one of its member functions as pure virtual
function is known as abstract class.
Practice Questions

Objective type questions:
Q.11Ininheritance, the existing class is called

A.Base class B. Parent class
C. Super class D. All of these
Q.2 Ininheritance, the new class s called
A. Derived class B. child class
C. Subclass D.All of these
Q.3 By default, the visibility-mode is
A.Public B. Private
C. Protected D. None ofthese
Q.4 When there is one base class and one derived class is called
A. Single inheritance B. Multilevel inheritance
C. Multiple inheritance D. Hierarchical inheritance
Q.5 When a class inherits the features of two or more classes is called
A. Single inheritance B. Multilevel inheritance
C. Multiple inheritance D. Hierarchical inheritance

Very Short Answer Type Questions
Q.1 What is inheritance?
Q.2 What is single inheritance?
Q.3 What is multilevel inheritance?
Q.4 What is multiple inheritance?
Q.5 What is hierarchical inheritance?
Q.6 What is hybrid inheritance?
Q.7 What is abstract class?
Short Answer Type Questions
Q.1 Explain the effect of visibility-mode in inheritance.
Q.2 What is the concept of virtual base class?

Essay Type Questions
(147)

Q.1 Write a program to create an abstract class 'shape' consist of a pure virtual
function 'volume'. The 'shape’ class is inherited by three classes called 'cone’,

'cylinder' and 'cube', these derived classes define the pure virtual function
'volume' to compute the volume.

Answer Key

1.D 2.D 3.B 4. A 5.C

Chapter 13

(148)

DBMS concepts

Introduction to file system

An abstraction to store, retrieve and update a set of files is called, file system. A
file system also includes the data structures specified by some of those
abstractions. These data structures are designed to organize multiple files as a
single stream of bytes. In a file system other abstractions also specified some
network protocols, these are designed to allow files access on a remote
machine.

The file system manages access to the data and the metadata of the files. A file
system ensures the reliability and it is the major responsibility of the system.

File system disadvantages (problems):

¢ Data redundancy: Same information available in many files e.g. student
address in different files for different purposes.

e Data Access difficulty: It requires new program when new request arrives
that 1s, each time new program has to write to full fill coming request because
program was not available for new request.

e Dataisisolated: indifferent files which are also in different formats.
Multiple users can not access the same data simultaneously because there was
difficulty in supervision for concurrent request.

¢ Difficulties with security enforcement.

Integrity issues: Constraints must be ensured on database.

Advantages of file system:
e FEasydesign with single-application.
e Asingle application based optimized organization.
e Efficientin term of performance.

HIERARCHY OF DATA

Data stored in computer systems can be view in following manner and we can
define database management system after that.

Data are logically organized into

1. Bits (characters)

2. Fields

3. Records

4. Files

(149)

5. Databases
Bit-a bit is the smallest unit of data representation (value of a bit may be a 0 or

1

F)ield - a field consists of a grouping of characters. A data field represents an
attribute (a characteristic or quality) of some entity (object, person, place, or
event).

Recoi)'d - arecord represents a collection of attributes that describe a real-world
entity. A record consists of fields, with each field describing an attribute of the
entity.

File - a group of related records. A primary key in a file is the field (or fields)

whose value identifies a record among others in a data file.
Now we can define database management system. As the name suggests, the

database management system is made of Database and Management System.
DATABASE: To find out what database is, we have to start from data, which is

the basic building block of any DBMS.

Data: Facts, figures, statistics etc. having no particular meaning (e.g. 2, XYZ,

19 etc).

Record: Collection of related data items.

File - a group ofrelated records

Database: Collection of interrelated data or data files or relation(for relational

database) . This collection of data is interrelated so it can be a relevant
information of an organization and this collection of information can be

accessed using a set of application program.
Management system: A management system is a set of rules and procedures

which help us to create, organize and manipulate the database. It also helps us
to add, modify and delete data items in the database.

DBMS
A database-management system (DBMYS) is a collection of interrelated data

and a set of programs to access those data.
Goals of DBMS: Design of any DBMS system has following goals

1. Main goal of any DBMS system is to manage large bodies of information.

2. Provide convenient way to store information in database.

3. Efficientretrieval of information from databases.

4. Safety and security of information stored in database.

5. Avoiding the anomalies during simultaneous access of information by many

(150)

Uusers.

Advantages of DBMS: Over conventional file system DBMS has many
advantages. These advantages make DBMS more useful in many applications.
Following are the advantages of DBMS.

1. Removing the data redundancy(duplicacy): If same information is
stored in many places it will waste storage spaces and effort . This redundancy

problem is handled in DBMS.
2. Sharing of Data: But in computerized DBMS, many users can share the

same database.

3. Data Integrity: We can maintain data integrity by specifying integrity
constrains, which are rules and restrictions about what kind of data may be
entered or manipulated within the database. This increases the reliability of the
database as it can be guaranteed that no wrong data can exist within the

database at any point of time.
4. Data independence: Application programs should be as independent as

possible from details of data representation and storage. The DBMS can
provide an abstract view of the data to insulate application code from such

details.
5. Efficient data access: A DBMS utilizes a variety of sophisticated

techniques to store and retrieve data efficiently. This feature is especially

important if the data is stored on external storage devices.
6. Data integrity and security: Security is ensured by providing abstract view

of data and integrity constraints. DBMS provides abstract view so that no need
to see all kind of information by all kind of users that is , particular user can see

only the part of database .
7. Reduced application development time: Clearly, the DBMS supports

many important functions that are common to many applications accessing
data stored in the DBMS. This, in Conjunction with the high-level interface to

the data, facilitates quick development of applications.
8. Recovery in DBMS: During transaction failure your database will be

restore in its original state
Applications of DBMS: In almost all area's DBMS has its applications.

Some of these are
e Banking: all transactions of banking sector

(151)

Airline: reservation, schedules, availability

Universities: registration, grades

Sales: customers, products, purchases

Manufacturing: production, inventory, orders, supply chain
Human resources: employee records, salaries, tax deductions

Example of DBMS: There are numbers of DBMS which is currently in use

Commercial DBMS:

Company Product
Oracle 81, 91,10g
IBM DB2, Universal Server
Microsoft Access, SQL server
Sybase Adaptive Server
Informix Dynamic server

Along with commercial DBMS, one of the widely used Open source DBMS
1s MySQL.

Abstraction levels in a DBMS

As we have discussed one of the main goal of any DBMS is to simplify the
user's interaction with the database that is, any kind of users(naive,
programmers, sophisticated etc.) can easily and efficiently retrieve
information from database. Abstract view of data helps to hide certain details
ofhow data is stored and maintained.

Physical level:The physical schema specifies how the relations are actually
stored in secondary storage devices. It also specifies auxiliary data structures
(indexes) used to speed up the access to the relations.

Logical level: The conceptual schema describes the data stored in the database
and relationships among those data that is, conceptual schema defines the
logical structure of entire database. For example, in a relational database it
describes all the relations stored in the database.

View level: The View level is a refinement of the conceptual level. It allows
customized and authorized access to individual users or groups of users. Every
database has one conceptual and one physical schema, but it can have many
schemas at view level. A view(external schema) is conceptually a relation, but
its records are not stored in the database instead, they are computed from other

(152)

relations. Figure 1 shows the relationship between these levels of abstraction.

| a1 || app? |

i : :

view | view? view3
ry
\ .

Logical level

T
v
Physical level

Figure 1. Data abstraction levels
Example school database: Above three schemas depicted in figure 1 can
be understood by using school database example.

Example physical schema: Relations stored as unordered files and index
on first column of Students.

Example conceptual schema:

Students(Roll no: int, name: varchar, address: varchar, age: integer, class:
char)

Subjects(subjectid: char, Sname: char,)

admission(Roll no: int, ClassName:char, AdmissionDate: date)

Example external Schema (View):

Class_info(ClassName:char, Strength:integer)

Schemas and instances

A schema is a description (over all design) of the data in terms of the data
model. We can say about a schema (metadata) that, a schema is a specification
of how data s to be structured logically and rarely changes.

In the relational model the schema looks like:

RelationName(fieldl : typel, ..., fieldn : typen)

Students(Roll_no:int, name : char, age : integer, class : char)

An instance on the other hand represents the contents of schema at any
particular moment of time which changes rapidly, but always conforms to the

(153)

schema. we can compare schema and instances with type and objects of type
in a programming language. An instance of the student relation, can be
represented as depicted in figure 2.

Student table
Roll_no Name Age Address class
101 Harish 10 Ajmer Sth
105 kailash 20 kota 10th
109 Manish 18 Ahmadabad Oth
120 Ronak 14 Udaipur &th
135 shanker 13 jaipur Tth

LISV 4 £ 31 LD WUIIVY Ul DLUUVLIL LUWULY DLV VY LS DLUUVLIL UV lUiLLo

Database languages: A database system has, Data Definition Language
(DDL) to specifies the data schemas and data Manipulation Language
(DML) to facilitate the retrieval and update of data in the database. DML
are basically of two types.

1. Procedural DML: It requires that the data and the procedure to obtained
those data must be specified by the user.

2. Non-procedural DML: In non-procedural DML only required data is
specified by the user without specifying the procedure to obtain those data. A
DBMS provides a specialized language, called query language to ask
questions to the DBMS. For retrieval, we query the database with the query
language, which is part of the DML. Term query language and DML are
synonymous.

Classification of DBMS: A DBMS system can be of several types based
on following criteria.

1. Based on users: A first criteria is the number of users supported by the
system. Single-user systems support only one user at a time and are mostly
used with personal computers. Multiuser systems, which include the majority
of DBMS, support multiple users concurrently.

2. Based on Architecture: A second criteria is the number of computer
system on which database system runs. A centralized or client-server DBMS
can support multiple users, but the DBMS and the database themselves reside
and runs totally at a single computer site(server machine). A distributed

(154)

DBMS (DDBMS) can have the actual database and DBMS software
distributed over many sites, connected by a computer network. Homogeneous
DDBMSs use the same DBMS software at multiple sites.
3. Based on types of data models: Third criteria is the types of data models on
which the DBMS is based. These DBMS are can be of following types.

e Hierarchical databases.
Network databases.
Relational databases.
Object-oriented databases

Data model:

A data model is a collection of concepts for describing data, the meaning of
data, data constraints and data relationships. Some of the data models are
Hierarchical, Network, Relational and Object-oriented.

Hierarchical data model :

We can find older systems that are based on a hierarchical model .The first
hierarchical DBMS is “IMS” and it was released in 1968. The hierarchical
DBMS is used to model one-to-many relationships, presenting data to users in
a treelike structure. Within each record, data elements are organized into
pieces of records called segments. To the user, each record looks like an
organizational chart with one toplevel segment called the root. An upper
segment is connected logically to a lower segment in a parent—child
relationship. A parent segment can have more than one child, but a child can
have only one parent. Figure 1 shows a hierarchical structure that might be
used for school management system.

The root segment is classes, which contains basic classe's information such as
name, strength, and room number. Immediately below it are two child
segments: subjects (containing subject id and subject name data), student
containing (name , address, rollno , age and class data). The subject segment
has one child below it: teacher (containing data about teacher name , salary,
address, phone and results evaluations).

(155)

Classes

Class_name | CStrength | RoomNo

Subject 1

| Subjectld | SubjectName |

Student

| Name | Roll_no | address | age | Class |

Teacher

| Tname | Salary I Address I Phone |

It is found that in large legacy systems where high volume transaction
processing is required, hierarchical DBMS can still be used. Banks, insurance
companies, and other high-volume users continue to use reliable hierarchical
databases,

Network data model: A network DBMS depicts data logically as many-to-
many relationships. In other words, parents can have multiple children, and a
child can have more than one parent. A typical many-to-many relationship for
a network DBMS is the student—subject relationship (see Figure 4 below).
There are many subjects and many students in a classs. A student takes many
subjects, and a subject has many students.

Hierarchical and network DBMS are considered outdated and are no longer
used for building new database applications.

subjectl subject2 subject3
studentl student? student3 studentd studentS

Figure 4 Network model for student subject relationship
Relational data model:

This is a record based data model. It uses a collection of relations (or tables) to
represent data and relationship between data. Each relation has a list of

(156)

attributes (or columns) which has a unique name. Each attribute has a domain
(ortype). Each relation contains a set of tuples (or rows). Each tuple has a value
for each attribute of the relation. Duplicate tuples are not allowed. It is the data
model used by mostly current database systems. Given below is an example of
student table showing students details.

Example
Student table

Roll_no MName Age Address Class
101 Harish 10 Ajmer ath
105 Kailash 20 Kota 10th
109 Manish 18 Ahmadabad |9th
120 Ronak 14 Udaipur 8th
135 Shanker 13 Jaipur Tth

Figure 5: Relational data model for student database

Database design steps or phase

Designing a DBMS application for any enterprise should follow some
phases.

e Requirements analysis: In this phase data needs of an organization
is identified.

e Conceptual Database design): Mostly done using the ER model.
Concept of chosen data model is applied on identified data to
construct the conceptual schema.

e Logical Database design: In this phase high level conceptual
schema maps onto the implementation data model of the database
system that will be used e.g. for RDBMS it is relational model.

e Schema refinement: Normalization is applied to refine schema into
smaller schema

e Physical Database Design: This phase specified the physical
features of the database e.g. internal storage structure, form of file
organization etc.

(157)

E-R model and E-R diagram

E-R model:

Entity-Relationship (ER) model is a popular conceptual data model. The
model describes data to be stored and the constraints over the data. E-R model
views the real world as a collection of entities and relationships among
entities. An entity is an “object” in real world that can be differentiable from
other objects.

E-R diagram: It is basically graphical representation of overall logical
structure of a database. The main components in this diagram are as
follows.

Symbol name Symbol Purpose
Rectangles Represent entity set
Ellipses Represents attributes
Diamonds Represents relationships

Lines Represents linkes b;ma.tttﬂ:):'utes to entity set and entity sets

to relationship set

Double ellipses @ Multivalued attributes

Dashed ellipses Represents derived attributes

Double lines C

Double rectangles Represents weak entity sets

total participation

(158)

Ellipses with line @ Primary key

Double diamonds Identifying relationship for weak
entity set

Entity: is an object in the real world that is distinguishable from all other
objects. E.g., A class, A teacher, The address of the teacher, a student, a subject.
An entity is described using a set of attributes. Each attribute has a domain of
possible values.

Entity Set: An entity set is a collection of entities of similar objects(same
type). In an entity set values of attributes are used to distinguish one entity
from another of same type. For each entity set, we should identify a key. A key
is a minimal set of attributes that uniquely identify an entity in a set. All entries
in a given entity set have the same attributes (the values may be different).

Representation of entity set and attributes in E-R diagram: An entity
set can be represented as a rectangle in E-R diagram.
Graphical representation in E-R diagram: Example of student entity

Student

Different attribute types:
Attributes are properties of entities and relationships like, attributes of tuples
or objects. Attributes can be of following types and represented as ovals in E-R
diagram.
e Simple attribute: This kind of attributes contains a single value e.g. in
above student entity Roll _no and age are simple attributes.
e Composite attribute: This kind of attributes contains several
components e.g. Sname attributes contains first name, middle name,
last name components.

(159)

Graphical representation in E-R diagram: Example of student entity and its
attribute Sname.

Student

e Multi-valued attribute: This kind of attributes contains more than
one value e.g. phone attributes contains many mobiles numbers, land
line number, office number.

Graphical representation in E-R diagram: Example of student entity and
its phone attribute.

Student

e Derived attribute: Value of this kind of attributes can be computed
from other attributes e.g., age can be computed from data of birth and
the current date.

Graphical representation in E-R diagram: Example of student entity and
its age attribute along with multi valued and composite attribute.

(160)

~ Address 7 age S
Sname N) A

e 1

Student

Relationship: A relationship 1s an association among two or more entities.
Relationship that involve two entity sets are called binary (or degree two)
relationship .

Relationship set: A set of relationships of the same type(among same entity
sets) e.g. student admission in classes. Here admission is a relationship
between student and classes entity sets. It can be represented as a diamond in
E-R diagram.

Graphical representation in E-R diagram:

dass_Name
CStrength
’ Classes
siohO

Attributes of relationships: A'relationship can also include its own attributes
(called descriptive attributes). For example assume that students take
admission in particular class on a particular date.

So where do the admission date go? Following are two possibilities here
With Student?
1. Buta student can have different admission dates for different classes.

With classes ?

2. But a class can assign different admission date for multiple students. So it
will go with admission as shown in above relationship example of E-R
diagram..

Constraints:
(161)

E-R model describes data to be stored and also the constraints over the data.
These constraints are mapping cardinality, key constraints and participation
constraints.

Key constraints: A key is a set of attributes whose values can belong to at most
one entity in an entity set that is, a set of attributes that can uniquely identity an
entity e.g. Roll no is a key of student entity set. A key of an entity set is
represented by underlining all attributes in the key.

Graphical representation in E-R diagram: Example of Roll no attribute in
student entity.

(rore) (omme) (Cowees

Student

E.g2. In classes entity set Class Name is the primary key which is unique
because we are assuming that 12 different classes from 1st to 12" exit in a
school without any sections.

Classes

e Composite Key: Two or more attributes are used to serve as a key
e.g. Name or Address alone cannot uniquely identify a student, but
together they can identify a student.

(162)

Student

e Candidate key: A minimal set of attributes that uniquely identifies an
entity is called a candidate key. e.g.{Roll no) and {Sname,
Address}both are two candidate keys but {Roll no, Sname}is not a
candidate key. If there are many candidate keys, we should choose one
candidate key as the primary key.

Mapping cardinality constraints: Mapping cardinality between two entity
sets el and e2 for binary relationship R can be of following types.

e Many toone: Eachentityinel isrelated to 0 or 1 entity in €2, but each
entity ine2 isrelated to 0 ormore inel.

Example: One student can be in one class at a time but one class can have
many students.

Graphical representation in E-R diagram: Using lines.

@
Many to many: Eache in el is related to 0 or more entities in

e2 and vice versa.

Example: Many teachers can teach one class or many classes can be taught
by a single teacher.

teacher classes

e One to one: Each entity in €1 is related to 0 or 1 entity in e2 and
vice versa.

Example: A teacher can only teach one subject e.g. Hindi , English ,Maths
. It is assuming that in school particular subject teacher is fixed.

teacher < _ i subject
° y: An entity o associat t one

(163)

entity in el.

Example: A teacher can also teach many subject in special case if teacher
of particular subject is not available in school.

teacher subject

Participation constraints: Diagram below shows the participation of an
entity set's all entities in a relationship. There are two types of participation
constraints for an entity in a relationship.
e Total: Every instance of the entity is present in the relationship

(represent it by a thick line).

Example: In this example participation of student entity is total

because every student must take admission in one class.

Graphical representation in E-R diagram: Using double lines.

student classes

e Partial: Not every instance of the entity is present in the
relationship.

Example: Participation of classes is partial if some classes do not have
student admission.

Weak Entities: Sometimes, the key of an entity set E can not be completely
formed by its own attributes, but from the keys of other (one or more) entity
sets to which E is linked by many to one (or one to one) relationship sets E can
be completely formed that is, An entity cannot be uniquely identified by all
attributes related to this entity. Such entity is called weak entity.

Example: Suppose each room in school can have seat numbers for each
student. Attributes of seats are SeatNo and SeatPosition. These attributes can
notuniquely identified a seat entity. So seat is an weak entity.

(164)

Seat
Rooms ¢ —

Weak entity: can be represented graphically in E-R diagram using double
diamond. A weak entity can be identified uniquely only by considering some
of its attributes in conjunction with the primary key of another entity (called
identifying or owner entity) and relating relationship is called identifying
relationship set.

Database design for a school management system:

Firstly, we assume some of the characteristics of a school.
1. Aschool have many classes from 1¥to 12",
2. Each class study number of subjects.
3. Many teachers work in a school.
4. Ateacher can teach only one subject.
5. Each teacher can take any number of classes with same subject.
6. A student can take dmission in any class.
7.Each class can have any number of students.
8. Each class has its own time table.
How we can start E-R modeling?
Designing of an E-R model can be done by identifying.

e Identify the Entities

¢ Findrelationships

o Identify the key attributes for every Entity

e Identify other relevant attributes

e Draw complete E-R diagram with all attributes including Primary Key
Step 1: Identify the Entities:
CLASSES
STUDENT
SUBJECT
TEACHER
Step 2: Finding the relationships:

e Many classes contains many subjects and class time table contains

(165)

subjects, hence the cardinality between subjects and classes is many to
many .

e One class has multiple teachers and one teacher belongs to many
classes for same subject , hence the cardinality between classes and
teacher ismany to Many.

e One class admits multiple students and one student admits in one and
only one class.
Hence the cardinality between class and student is one to Many.

e One subject is taught by only one teacher, hence the cardinality
between subject and teacher is one to one.

e Many subjects read by multiple students and one student reads
multiple subjects in a class, hence the cardinality between subjects and
student is Many to Many.

Step 3: Identify the key attributes and other relevant attributes:
e Subjectld is the key attribute and SubjectName is the other attribute for
“subject” Entity.
e Roll noisthe key attribute and Sname, Age, Address, phone are other
attributes for “student” Entity

e Tname isthe key attribute and address, phone, salary are other attributes
for “Teacher” Entity.

e C(Class name is the key attribute and CStrength, CRoomNo are other
attributes for the Entity “classes”.

e CRoomNo is the key attribute and PeriodNo is other attributes for the
Entity “timetable”.

Complete E-R diagram of the school database

(166)

@
\: @

Subject @
reads
@ | Teacher

i

Classes

student

@ CRoomNo

Figure 6. E-R diagram of a school from 1" to 12th
Translating E-R into Relational schema: Given E-R diagram in Fig 6

(167)

can be converted into relational design. This mapping can be done by some
steps.

1. Translating entity sets: For entity set all its attributes will form columns of
table and its key attribute will be key column that is,

e Attributes »columns
o Keyattributes -key columns
So converted schema's of school E-R Diagram are.
Student(Roll_No, Sname, age, Address, Phone)
Classes(Class_name, Cstrength, CRoomNo)
Teacher(Tname, Salary, Address, Phone)
Subject(Subjectld, SubjecrName)

2. Translating relationship sets:
A relationship set will also be translated into a table as.

e Keysof connected entity sets will be the columns of table.

e Attributes of the relationship set (if any) will be columns of table.

e Foreign key in relationship set will be primary key of participating
entity sets.

e Multiplicity of the relationship set determines the key of the table and
will be as follows.

For (one-to-one Relationship): Primary key of either entity set can be
primary key of relationship.

For (one-to-many Relationship) or many to one: Primary key of the entity
set on the “many “ side of the relationship set will be primary key of
relationship set.

For (Many-to-many Relationship): Combination of primary keys of
participating entity sets will form the primary key of relationship.

So converted schema's of school diagram for relationships are.
Class_takes(Class_name, Tname)

Admission(Roll No, Class_name, Admission_date)

Teaches(Subjectld, Tname)

Reads(Roll_No, Subjectld)

ClassTimeTable(Class_name,Subjectld, PeriodNo, CRoomNo, PeriodNo)
After merging resultant schema's of school database:

(168)

Student(Roll_ No , Sname, age, Address, Phone, Class name,
admission_date)

Classes(Class_name, Cstrength, CRoomNo)

Teacher(Tname, Salary, Address, Phone)

Subject(Subjectld, SubjecrName)

Class_takes(Class_name, Tname)

Teaches(Subjectld, Tname)

Reads(Roll_No, Subjectld)

ClassTimeTable(Class_name, Subjectld, PeriodNo, CRoomNo, PeriodNo)

Introduction to normalization

One more method for designing a relational database is to use a process
commonly named as normalization. The main purpose is to generate a set of
relation schemas that allows us to store information without unnecessary
redundancy, along with that also allows us to retrieve information easily. So to
do all design, design the schemas in appropriate normal forms using the
concepts of functional dependencies.

Bad database and purpose of normalization:To understand the concept of
bad database and purpose of normalization we consider following student
table.

Student
Roll no |Name Age |Address |Phone class Subject
101 Harish 10 Ajmer |1234567891 (5th Hindi
101 Harish 10 Ajmer |1234567891 (5th Math's
101 Harish 10 Ajmer |1234567891 (5th Sanskrit
120 Ronak 14 Udaipur | 22222222222 8th Hindi
120 Ronak 14 Udaipur (22222222222 | 5th Sanskrit

By analyzing the above schema we can easily find that this design is nota good
database design.

Why this design is bad?

For student reads subjects(Roll no, name, age, address, class, subject) This
design has redundancy, because the name of a student, age, address, class is
recorded multiple times, once for each subjects the student is reading. This

(169)

redundancy caused serious problems in design that is, it wastes storage space
and introduce potential inconsistency in database. That is why this database
designis bad.

A bad database design also caused many problems(Anomalies) during
operation on database.

Update anomalies: all repeated data needs to be updated when one copy is
updated. For example if we want to update the address of a particular student
we have to update all tuples of that student.

Insertion anomalies: [t might not be possible to store certain data unless some
other, unrelated information is also stored. We need to know the phone in order
to insert a tuple . This could be fixed with a NULL value but nulls also caused
problems or hard to handle.

Deletion anomalies: It may not be possible to delete certain information
without losing some other, unrelated information that is if we delete all the
tuples with a given (class, Roll no) we might lose that association. So if we
want to detect and remove redundancy in designs we need a systematic
approach. In another word, if we want to design a good database then we have
to normalized it by using Dependencies, decompositions and normal forms.
Functional dependencies:

A functional dependency (FD) is a kind of IC that generalizes the concept of a
key. Let R be arelation schema, with X and Y be nonempty sets of attributes in
R.Foraninstancer of R, we say that the FD

X -Y (X functionally determines Y)

issatisfiedif: V tl,t2 er,t1. X=t2.X=)tl.Y=12.Y

X -Y means that whenever two tuples in R agree on all the attributes in X, they
must also agree on all attributes in Y

Example of a Functional Dependency:
The functional dependency AB — C: satisfies for following instance

A|B|C|D
al | bl |cl|dl
al |bl|cl|d2
al | b2|c2)|dl
a2 | bl |c3|dl

(170)

e A primary key is a special case of a FD: If X > Y (holds, where Y is
the set of all attributes, then X is a superkey

e FDsshould hold foranyinstance of a relation.

e Givenasetof FDswe canusually find additional FDs that also hold.
Example: Given a key we can always find a superkey.
Redefining keys using FDs:
Asetofattributes K is a key for arelation R if K —all (other) attributes of R that
1s, K is a “super key”. No proper subset of K satisfies the above condition that
is, K is minimal.
Normalization

Normalization is a process of organizing the data in database to avoid data
redundancy, insertion anomaly, update anomaly & deletion anomaly. In this
process we check a given relation schema against certain normal form to check
whether or not it satisfies certain normal form. If a relation schema does not
satisfies certain normal form then we decompose it into smaller schemas.

Normalization is used for mainly two purposes,
e Eliminatingredundant (useless) data.
e Ensuringdata dependencies make sensei.e dataislogically stored.

Relational database design: To design a relational database ,we need to know
for a given schema that it is a good design. If design is not good then we
decompose it into smaller schemas but the decomposition should be good.
After that we check each decomposed schema for certain normal forms. If a
given relation schema is in a normal form then we know some problems cannot
arise.

Normal forms: Various normal forms are
l. First Normal Form(1NF)

2. Second Normal Form(2NF)

3. Third Normal Form(3NF)

4. BCNF

First Normal Form(1NF): A relation is in first normal form if every field
contains only atomic values (no lists nor sets).

Example:
Student table given below in figure 7 is not in INF but in figure 8 is in INF

(171)

Student

Roll_no|Name Age |Subject
101 Harish 10 hindi.maths
120 Ronak 14 maths

Figure 7. Student table showing subjects of students not in INF

Student

Roll_no|Name Age [Subject
101 Harish 10 Hindi
101 Harish 10 Maths
101 Harish 10 Sanskrit
120 Ronak 14 Hindi
120 Ronak 14 Maths

Figure 8. Student table showing subject of student in 1NF

Second normal form

As per the Second Normal Form there must not be any partial dependency of
any column on primary key. It means that for a table that has primary key,
every non prime attribute in the table should be fully functionally dependent
on primary key attribute . If any column depends only on one part of primary
key, then the table fails in Second normal form.

Student Reads Subject (Roll_no, subject Id, Sname, address, Subject
Name)

In this student subject relation primary key attribute are Roll no, and
subjecteld. According to the rule, non-key attributes, i.e. Sname and
SubjectName must be dependent upon both and not on any of the prime key
attribute individually. But we find that Sname can be identified by Roll no and
SubjectName can be identified by Subjectld independently. This is called
partial dependency, which is not allowed in Second Normal Form.

We broke the relation in two as depicted in the below picture. So there exists no
partial dependency.

Student(Roll no, Sname, address)

(172)

Subject(Subjectld, SubjectName)

Third Normal Form

If R is a relation schema, F is a set of functional dependencies on R and A is a
single attribute in R then to check whether this schema is in 3NF or not, for
every FD we check the following conditions. If for any FD, these conditions
fails then given schema R will not be in 3NF.

Conditions:
e IfanyFDistrivialthatis,in3 A(A B),or
o |Fleftsideattributein FDisakeyforschema or
e Ifrightsideattributeis partofsome key(s) forR

BCNEF: To check for a relation schema that, whether this schema is in BCNF or
not, for every FD we check the following conditions. If for any FD, these
conditions fails then given schema R will not be in BCNF.

Conditions:
e Ifany FD is trivial thatis,in B A (A B), or
o |F left side attribute in FD is a key for schema or

If any relation is in BCNF then it will be also in 3NF. That is BCNF implies
3NF but 3NF can not implies BCNF.

Design goals

So for a good relational database design, a relational schema should be in
BCNF with Lossless- join and dependency preservation. If we cannot achieve
this, we accept 3NF with Lossless-join and dependency preservation.

Important Points:
e DBMSisused to maintain and query large datasets.

e Benefits include recovery from system crashes, concurrent access,
quick application development, data integrity, security and sharing of
Data.

e Levelsofabstraction give data independence.

e ADBMS typically has alayered architecture.

e Functional components of DBMS are file manager, Buffer manager,
Query processor, Data files, Data dictionary and Indices.

e A DBMS system can be of several types based on criteria, based on
users, architecture and types of data models

e Entity: is an object in the real world that is distinguishable from all
other objects.

(173)

A minimal set of attributes that uniquely identifies an entity is called a
candidate key.

A bad database design caused many anomalies during operation on
database such as update anomalies, insertion anomalies and deletion
anomalies.

A functional dependency (FD) is a kind of IC that generalizes the
conceptofakey

If any relation is in BCNF then it will be also in 3NF. That is BCNF

implies 3NF but 3NF can not implies BCNF.

Practice Questions
Objective type questions:
Q1. Which one of the following is not a goal of DBMS.
a) Managing large information b) Efficient retrieval
c¢) Preventing concurrent access d) Safety of data
Q2. Which one of the following is an example of a commercial DBMS.

a) Oracle b) IBM
c) Sybase d)all
Q3. Which one of the following is the simplest level of data abstraction.
a) Physical b) Logical
c) View d) none of these
Q4. Normalization means
a) Joining relations b) Decomposition of relation
c¢) both d) none of these
Q5. Which normal form is more restricted?
a) INF b) 2NF
c) BCNF d) 3NF

Very short answer type questions:
Q1 Whatis DBMS?.
Q2. Define arecord.
Q3. Give names of different data redundancy.
Q4. Define database schema.
Q5. Whatis therole of indexes in DBMS?
Q6. Whatis a query language?
Q7. Differentiate between procedural and non -procedural DML.

(174)

Q8. Differentiate between schema and instances.
Q9. What are the steps of designing a database?
Q10. Whatis an entity?

Short answer type questions:
Q1. What do youunderstand by atomicity?
Q2. Differentiate between logical and physical data independence.
Q3. Whatis aweak entity? Draw it in E-R diagram?.
Q4. Differentiate between primary and composite key.
Q5. Whatis abad database?.

Essay type questions:
Q1.What are the various components of DBMS? Explain with suitable
diagram.
Q2. What is a data model.? Explain hierarchical data model? How it
is differ from network data model.

Q3. Explain various types of attributes and relationships in E-R
diagram and also give graphical representation for them.

Q4. Design an E-R diagram for a school consisting of different classes
from 1" to 10",

Q5. What is normalization? Give various forms of normalization.

Answers key for objective questions

Ql:c Q2:d Q3: ¢ Q4:b Q5: ¢

(175)

Chapter 14
SQL

Relational database concepts:

Relational database is a collection of tables. Each table has a unique name and
consists of many columns. Each column of a table also has a unique name. The
name of relational database is derived from mathematical relation because
there is a close correspondence between them.

Table(Relation): In RDBMS mainly data store in a special kind of object
called table. In another world, a table is a collection of related entries and
consists of rows and columns.

Following is an example of a student table.

Student table
Roll no Name Age Address class
101 Harish 10 Ajmer 5th
105 Kailash 20 Kota 10th
109 Manish 18 Ahmadabad Oth
120 Ronak 14 Udaipur 8th
135 Shanker 13 Jaipur 7th

Figurel The student relation

Field: Field of a table represents its column which is used to store the specific
information about a record. For example in above given table student Roll no,
name, address and class are ficlds of table.

Records: It is also called the row of a table. Basically it is an individual
entry of a table available in that table. For example following is the one
individual entry of a student table or row of a table or tuple of a table.

Student table
[105 | kailash | 20 | kota | 10th \

Column: A column of a table is that vertical entry of a table which keeps all
information related with a specific field. For example Roll no is a column ofa
student table which keeps the following information.

(176)

Roll no
101
105
109
120
135

Domain: Domain of a field is the set of values permitted for that field. For
example domain ofa field name is the set of all names.

Database schema: A schema of a database is the logical design of a
database , which is rarely changed. For example following is the schema of
student , classes and teacher table.

Student(Roll no,name, age, address, class)

classes(Class_name, CStrength, CRoomNo)

Teacher(Tname, Address, salary, phone)

Relational Database instance: A collection of data or information stored in a
table at any particular moment of time is called the database instance. Given
below is an instance of student relation, which can be changed at any moment
oftime by making a new entry in the table or deleting an entry from table.

Student
RollNo Name Age Address Class
101 Harish 10 Ajmer 5
105 Kailash 20 Kota 10"
109 Manish 18 Ahmadabad ot
120 Ronak 14 Udaipur 8"
135 Shanker 13 Jaipur 7"

Primary key: Itis a set of one or more attributes (field) of a table which can be
used to identify uniquely any row or tuples of that table. Then such set of
attribute taken collectively forms a primary key of table. Primary key is also a
kind of constraints. For example in above given table in figure 1 student
primary key is Roll no field because in student table using this field all the
students can be identified uniquely and also with the help of Roll no the record
ofany student can be easily retrieved from student table.

For example suppose the value of Roll nois 105. If we take this value then the
records retrieved from table will be of student ““ kailash™.

Data constraints: Data constraints are rules on columns of a table to define
the limit of data entry, so that the data entries in the table should fixed the

(177)

consistency, accuracy and reliability of database and there should not be any
kind of data consistency loss in database when changed is made by authorized
users of database. Data constraints can be of column level and table level. The
main difference between column level and table level constraints is that,
column level constraints are for a single column whereas table level
constraints are applied on whole table.

Following are the examples of data constraints

1) Class of a student can not be null.
2)Roll_no oftwo students can not be same.

3) There will be a matching class in classes relation for every class of student
relation.
Constraints on a single relation: Following are the constraints on a single
relation

1) Notnull
2) Unique
3) Check (<predicate>)

Not null constraints: This constraints restricts the entry of null value for a
field or attribute in any table that is, if this constraints is ensured for a field and
any operation in this table to try to insert the value null by changing then an
error will be generated.

For example, you do not want the value null for class attribute of student table.
Similarly value of roll no attribute should not be null because it is a primary
key of student table.

Unique constraints: This constraint ensure that any two tuples or rows of any
relation can not be same for all primary key attributes that is, for both the tuples
values of all the attributes will not be same. Unique constraints form the
candidate key of a relation which can be more than one in a relation.

Check constraints: Check constraints can be applied on both, domain and
relation declaration. If it is applied on relation declaration then all tuples of
relation must fulfill the condition specified by the check clause that is, check
clause ensures that all the values of a column must fulfill the condition applied
on column.

For example the values of class field attribute in student table will be 1*,2™ 3" -
___,9th, 1 Oth, 1 lth, 1 zth'

check (classin('1%,'2",'3", -—--- 9"'10",'11",'12")

Entity integrity constraints: Entity integrity ensures that, two rows or
records of a table can not be duplicated and also the field which identifies the
every records of the table is a unique field. The value of this field will not be
null. Entity integrity constraints can be imposed by primary key. If we define
primary key for every entity then it fulfills the entity integrity itself.

For example in given student table if the primary key of this table is Roll no

(178)

field then Roll no of each student in this table will be different and also the
value of this field for any student will not be null that is, all will have its own
Roll no. Due to different Roll no this table cannot have two same rows.

Student table
RollNo [Name Address Age Class
110 Komal | jaipur 17 12th
120 Ronak | Udaipur 14 8th
105 kailash | kota 20 10th
107 hari chittorgarh| 10 50

Referential integrity: If we want to ensure that a value that appears in any
relation for a given set of attributes also appears for certain set of attributes in
another relation that is, both the tables have same values for some of the
attributes then this condition is called referential integrity.Referential integrity
can be ensured by foreign key constraints.

Foreign key integrity constraint: To understand this constraint we consider
the following table as a example. There are two tables student and classes
(name of tables) is given and any moment inserted values in the table is also
mentioned. The primary key of given student table is Roll no field whereas
primary key of classes table is class_name field.

student
RollNo | Name Age Address Class
101 Harish 10 Ajmer 5"
105 Kailash 20 Kota 10"
109 Manish 18 Ahmadabad gt
120 Ronak 14 Udaipur 8"
135 Shanker 13 jaipur 7%

Classes

Class name Class room Strength
12 F-1 95
107 F-2 80
gt F-3 70
4h F-4 110

Figure 2 Foreign key constraints on student relation

(179)

We are assuming that one and only one class of all standard exist such as, one
class of 12", one class of 10", one class of 9" and so on that is sections of a class
does not exists.

The student table among its attributes (Roll no, address, age, name, class)
keeps one attribute(class) which is the primary key of another table (classes).
For example class field of student table is the primary key of classes table. So
this attribute class in student table is called the foreign key of student table
which will refer to table classes.

The relation student is called the referencing relation whereas classes is called
the referenced relation of foreign key. To become foreign key domain type of a
foreign key attribute and another relation attribute should be same and number
of attributes in foreign key field and another relation must be same that is,
should be compatible.

We can ensured following by foreign key

1) We can not delete any record from classes table until a matching record is
available inrelated table student.

2) We can not change the value of primary key in classes table until a related
record of such record is available in another table.

3) We can not insert a new value in student table's class field until this value is
not available in the primary key field (class_name) of classes table.

4) Although you can insert the null value in foreign key field but if we want
that this should not reject then we use cascade in SQL.

Introduction of SQL:- SQL is a combination of relational algebra and
relational calculus. It's a standard language of relational database management
systems which is used to organize, manage the data available and retrieval of
data from relational database. It is an important feature of SQL.

Companies like Oracle, IBM, DB2, Sybase and Ingress, use SQL as a standard
programming language for their database. Basic version of this is called sequel
which is developed by IBM.

Versions of SQL are SQL-86, SQL-89(extended standard), SQL-92 and SQL-
1999. Latest version of SQL is SQL-2003.

SQL is not only a query language but also a standard itself which has following
types:-

1. Data Definition Language (DDL)

2. Data Manipulation Language (DML)

3. Data Control Language (DCL)

Most of the commercial relational Database like IBM, Oracle, Microsoft, and
Sybase etc use SQL. All Databases do not support all features available in
different versions. So to use all the features of particular version always follow

(180)

manual according to the Database system.

Advantages of SQL:- SQL has many advantages for all the commercial
(Oracle, IBM, DB2, Sybase) as well as for open source (MySQL, Postgres)
database systems.

1. High speed:- SQL is a kind of language which retrieve the data efficiently
and quickly from a database of a big organization. So SQL is a fast language.

2. Easy to learn:- It is easy to learn because of short size of programming
code that s, there is no need to write many lines of code.

3. Well defined standard:- SQL is a standard language which is standardized
by ANSI & ISO.

DDL(Data Definition Language) :- it's a part of SQL by which the schema of
the database is specified. It also has specification for all the relations of
database which are as follows:-

1. Specification for relational schema.

2. Specification for domain of each attribute value.

3. Specification for constraint.

4. Specification for creating index.

5. To provide authorization and security.

6. To provide physical storage for each relation.

Basic domain types of SQL:-there are few built in domain types available
in all versions of SQL

1. Numerical Data Types:- which includes following:-

Int or Integer :- used for big size int values , occupies 4 byte of storage .

Small Int :-used for small sized integers, occupies 2 bytes of storage.

Tiny Int :- used for very small sized integers and unsigned integers.
Float(M.D):- used for floating point numbers and valid for signed numbers
only. Here M is the total number of digits before decimal and D is the total
number of digits after decimal

Double(M,D) only valid for floating point numbers having double precision.
Itisequivalentto REAL.

2. String Type_:-which includes following:-

(i). CHAR(C):- this data type is valid for fixed length string. Here C is a length
of the string which is given by user. If any string shorter than this size is stored
then remaining space will be padded with the spaces.

(i1). VARCHAR(C):- used for variable sized string, here C is the maximum
length of string which is specified by the user.

3.Date or Time Date Types:- Includes following:-

(1). Date:- this data type is defined in the formats YYYY-MM-DD i,e. date is

(181)

stored in this format and it can be in between 1000-01-01 to 9999-12-31. For
example if age of a student in student table is 1st july 1980 then it will stored in
the 1980-07-01 format.

(1i1)) DATETIME :-Date and time together can be stored in YYYY-MM-DD
HH:MM:SS Formate. Date and time can be stored from 1000-01-01 00:00:00
t09999-12-31 23:59:59. For example 2:35 PM and 1st july 1980 can be stored
as 1980-07-01 14:35:00.

(i11) Time:- Itstorestimein HH:MM:SS format.

(iv) Year:- Itstoresyearin2 and4 digit format.

Data Manipulation language (DML):- It is that part of SQL which is also
known as query language so DML and query language are synonyms. DML is
used to manipulate (Insert, Delete, Update and Retrieve) the data stored in any
relation. The main commands of DML are:

(1) SELECT

(i) UPDATE

(iii) INSERT

(iv) DELETE

Data Control Language :- DCL is the collection of SQL commands which
provide security and maintain the rights of Data Manipulation. DCL includes
the following Commands :-

(1) COMMIT

(1)) ROLLBACK

(ii1)) GRANT

(iv) REVOKE

DDL Commands and Syntax:-
CREATE :- CREATE Table command isused to create atableand arelation
. The syntax of command is defined as following:-
Syntex: MY SQL generic syntax for creating a table is.

CREATE TABLE table Name (F1 D1, F2 D2,............. ,Fn Dn<Integrity
Constraintsl,...... <ICk>);
Here in above syntax each Fi is a name of a table field or attribute and Di is the
domain type of values under each Fi.
Apart from that many types of constraints can also be applied on the table like
PRIMARY KEY, FOREIGN KEY etc.
For example if table named as student is to be created whose schema is defined
as Student(Roll No, Name, Age, Address, Class) and schema of Relation
classes is defined as Classes(Class Name , CRoomNo, Cstrength) then
creation of student table can be defined as:

(182)

CREATE TABLE Student

(Roll_No int NOT NULL AUTO_INCREMENT, Name CHAR(20), Age int
NOT NULL, Address VARCHAR(30), Class CHAR(10) NOT NULL,
primary key(Roll_no), foreign key(class) references classes(class_name));

Here, in above example Roll No can be defined as primary key and foreign
key constraint is used to prevent the operation that try to violate the link
between student and classes table. class can be taken as foreign key. Here NOT
NULL and Auto increment are constraint used to define limitations i.e. NOT
NULL is used to define that there must not be any NULL value in the attribute
Roll No. There would be an error if NULL value is inserted in Roll No
whereas Auto_increment is used to increase the value of Roll _no field by 1. It
has value 1 by default. If we want to start the sequence by another value then
we use the syntax.

ALTER table student AUTO_INCREMENT=100

Syntax for Classes table

CREATE Table Classes (Class Name CHAR(10) NOT-NULL, CRoomNo
CHAR(10),

PRIMARY KEY (Class_Name));

Above table can be created by MySQL Prompt like

root@host# MYSQL-u root-p

enter passsword ; **##*

MySQL>use School Management

Use command is used to use database named as School Managemnt.
MySQL>CREATE DATABASE School Management;

MySQL>use School Management

MySQL> CREATE TABLE Student (Roll No Int NOT NULL
AUTO_INCREMENT, Name CHAR(20), Age int NOT NULL, Address
VARCHAR(30), Class CHAR(10) NOTNULL, PRIMARY KEY (Roll No),
FOREIGN KEY (Class) REFERENCES Classes(Class Name));

->Query ok, o row affected

In MYSQL termination is done by placing semicolon(;) at the end of any
command or statement Any table can be removed from the database by the
following command.

Generic syntax:

DROPTABLE table name;

To remove the table named as Student the command is

DROPTABLE Student;

(183)

ALTER table command :-This command is used to add, delete, and modify
the column in the database.

Following are the appropriate syntax:-

1. To add a new column

ALTER TABLE table name ADD column name datatype;

For example a new column Cstrength can be added to the table Classes
ALTER TABLE Classes ADD Cstrength int;

2. To remove existing column
ALTER TABLE table name DROP COLUMN column name;

3. to change the datatype of any existing column

ALTER TABLE table name MODIFY column name datatype ;
For example:-

ALTER TABLE Student MODIFY Age Date;

Other example:-
CREATE TABLE Teacher(Tname VARCHAR(20); DOB Date, Salary
FLOAT(5,2),Address VARCHAR(30), phone int PRIMARY KEY (Tname));

CREATE TABLE Teaches(Tname VARCHAR(20), Class_name CHAR(10),
PRIMARYKEY (Tname, Class name), FOREIGN KEY(Tname)
REFERENCES Teacher(Tname), FOREIGN
KEY(Class Name)REFECENCES Classes (Classs Name));

Check Constraints Syntax:-

Example of Check Constraints Syntax is following

CREATE TABLE Student (Roll No int NOT NULLAUTO INCREMENT,
Name CHAR(20), Age int NOT NULL, Address VARCHAR(30), Class
CHAR(10) NOT NULL, PRIMARY KEY(Roll No), Check(Class in ('1st',
"2nd','3rd', '4th', '5th', '6th', '7th', '8th', '9th', '10th', '11th', '12th")));

Create Index Command:-This command is used to create index of any table.
Index is not visible to the user but help them to search the data rapidly in the
table by the following syntax.

CREATE INDEX Index_name ON table name (column_name)

For example

CREATE INDEX SIndex on Student(Address)

Data Manipulation commands and their syntax:-
SQL DML commands are as follows:

(184)

(i) INSERT

(ii) DELETE
(i) UPDATE
(iv) SELECT

(i) INSERT Command:- A blank table is created by CREATE TABLE
COMMAND i.e. there is no value, records and tuples in that table. To fill up the
values or data in that table insert command is used.

MySQL Syntax :-

INSERT INTO

Table Name(Column Namel,Column Name2,...... ,Column Namen)VAL
UES(Valuel,value2,...... valuen);

To insert string values, values are enclosed within single (" ') or Double(*
“)quotes.

Insertion Through MySQL Command Prompt:-

For example ifnew values are to be inserted in Student table then
MySQL>USE School Management;

MySQL>INSERT INTO Student (Name, Age, Address, Class)'
VALUES(“HARI”,15,”Chittorgarh”,”10th™);

In the above example we have not taken the column Roll No because it is in
auto increment mode which means MySQL automatically gives the value of
Roll_No in sorted manner.

Other syntaxis :

INSERT INTO Student VALUES (“prakash”,18,”jaipur”,”12th”);

In other syntax of INSERT INTO we can directly insert so many tuples by
using SELECT instead of specifying tuples individually.

(1)) DELETE command :- An entire tuple is deleted by this command but
specific value of any attribute can't be deleted by this.

Syntax:-

DELETEFROMT,WHERE P;

Here T is a relation from which tuple is to be deleted and P is a predicate
(condition), according to which tuples would be deleted .

DELETE FROM Student, WHERE Roll No=105;

By above command all the tuple having Roll NO=105 would be deleted from
the Student table. To delete all the tuples of any table we write.

DELETE FROM Student ;

DELETE FROM Classes;

To delete all the records of Class 10th students from the table Classes

DELETE FROM Student, WHERE Class ="10th”;

(185)

(ii1)) UPDATE command:- UPDATE command is used to change the value of
any attribute from the given table, i.c. if we do not wish to change the entire
tuple but only a specific value of any attribute then update command is used.
Syntax:

UPDATE table name SET first field=valuel, second field=value2
[WHERE clause];

Two or more values of fields can be updated in following manner

MySQL>UPDATE Student,

SET Class="11th”, WHERE Roll No=12;

In above example, student whose Roll No is 12th then we are try to change the
class from 10th to 11th.

To change the address of a student:-

UPDATE Student, SET Address="Ajmer”’, WHERE Roll No=102;

student
RollNo Name Age Address Class
11 Hari 15 Jaipur 10th
101 Prakash 16 Kota 11"
102 Basu 11 Udaipur 6"
120 Viveka 9 Jaipur 4"

After update the following changes will occur in the table i.e. table will be in
following form:-

Roll No Name Age Address Class
11 Hari 15 Jaipur 10th
101 Prakash 16 Kota 1"
102 Basu 11 Ajmer 6"
120 Viveka 9 Jaipur 4"

(iv) SELECT statement:- There are following three clauses in any SQL query
expression:-

(i) SELECT
(iiy FROM
iii) WHERE

1.e. any SQL query expression consists of three clauses in its basic structure.

e SELECT clause is used to display the attributes in the output relation

(186)

e FROM clause is used to address the relation which is used in query
expression. Relation written in the FROM clause join the form of
Cartesian product.

e WHERE clause is used to write the predicate (condition) which is
basically applied to the relation written in FROM clause and Boolean
values of which (true or false)

SQL query is in this form:-

SELECTATI1,AT2,AT3,...,ATn,

FROMrl,12,r3,...rm,

WHERE P;

Here ATi denotes attribute and r, denote relation and P is a predicate

SELECT clause :- It keeps all the attributes which has to be retrieved from the
relation.

Example :- To make it crystal clear we take the example of student table from
School Management database as followed:-

Roll No Name Age Address Class
101 Bhagat singh | 20 Ajmer 12th
105 Chandra 17 Kota 11 th
12 Shekhar 16 Jaipur 10th
17 DinDayal 15 Udaipur 9 th
90 Rohit 9 Ajmer Sth

Syntax of SELECT command is:

SELECT field names, FROM realtion_names;

Several fields can be fetched by writing field names. We can also use
astrick(*) to display all the relation in the output relation.

For example:-

SELECT Roll No, Age, FROM Student;

Output->
RollNo Age
101 20
105 17
12 16
17 15
90 9

SELECT * FROM Student;

Output->

(187)

RollNo Name Age Address Class
101 Bhagat 20 Ajmer 12"
105 Chandra 17 Kota 1"
12 Shekhar 16 Jaipur 10"
17 DeenDayal 15 Udaipur 9t

90 Rohit 9 Ajmer 5"

Duplicate fields are removed by DISTINCT keyword when used with
SELECT.

SELECT DISTINCT Address FROM Student ;

The output of above query produces a relation with no duplicate Address.
Output->

Address
Ajmer
Kota
Jaipur
Udaipur

Arithmetic operations can be used in SELECT command along with field
names .Operations which are used are as follows:-

Description Operator
Addition +
Subtraction -
Division /
Multiplication *

To understand this we take a table records of all the teachers. The name of table
is Teacher which contain attributes Teacher (Tname, Address, Salary,
PhoneNo);

Tname Address Salary Phoneno
Radha Kerla 5000 1234567899
krishan

Lalaji Udaipur 750 1111162123
Sarvopalli | Rampur 2000 1312171080
Headgevar | Maharastra 9000 1111110510

SELECT Tname, Salary *10, FROM Teacher;
Output of above query is a relation which contain Tname , Salary, but all the

(188)

values of Salary is multiplied by 10

Output ->
Tname Salary*10
Radha krishnan 50,000
Lalaji 7500
Sarvopalli 20,000
Leadgevan 90,000

Use of SELECT statement with WHERE clause:-

One or more condition are written in WHERE clause and retrieval can be done
only if condition is satisfied.

For example:- query for table teacher is

SELECT Tname, Salary, FROM Teacher WHERE Salary>2000;

Output ->

Tname Salary
Radha krishnan 5000
Harivansh 9000

Following logical connections are used in WHERE clause :-

(1) AND

(i) OR

(i) NOT

Comparative operators are used in WHERE clause
Description Operators
Less than <
Less than or equal to <=
Greater than or equal to >=
Greater than >
Equal to =
Not equal to = or <>

Example:-

SELECT Tname, FROM Teacher, WHERE Salary>2000 AND

Address="Kerala”;
Output ->

Tname

Radha krishnan

(189)

3. Data Control Language commands (DCL):- These commands are related
to database security. It gives privileges to users,so that users can access the
some database objects.

GRANT command:- This command is used to grant permission by one user
to another user to use its created objects, i.e. until or unless say user A can't
grant access of its created table to user B ,user B can't access it. This permission
is given by using GRANT command.
GRANT statement provides many kinds of privileges on many objects (Table,
View)
Syntax:-
GRANT [type of permission] ON [database name] .
[table name] TO'[user name]'@'localhost';
Here types of permissions are.
o CREATE-Give permission to create new table or database.
DROP - Give permission to drop the table or database.
DELETE - Give permission to delete lines or tuples.
INSERT- Give permissiontoinsertanew lines ortuples.
SELECT - Give permission to read the table or database.
UPDATE- Give permission to update the tuples.
If we use asterisk (*) in place of database name or table name in above syntax
then it gives the permission to access any database or any table.
Syntax:-
GRANTALL Privileges ON *.* TO 'new_user @ 'localhost';
This command gives permission to read, write ,execute and to perform all the
operations on all the databases and tables.

Example- To understand GRANT command in MySQL

Create New Users:- Default user in MySQL is Root, which has full access on
all the databases .To create new user the syntax is

MySQL> CREATE USER 'new user' @'localhost' IDENTIFIED BY
"Password";

Example:-

MySQL> CREATE USER 'l14EEACS350" @'localhost' IDENTIFIED BY
'123456';

Using above syntax a new user named as '14EEACS350' is created and
password is '123456' , although this user doesn't have any kind of access to
database even though this user is not allowed to login therefore privileges are
to be given to the user.

(190)

Example:- GRANTALLPRIVILEGES ON
School Management.* TO '14EEACS350'@'localhost'
IDENTIFIED BY '123456';
By above example user 14EEACS350 is given access on all the tables of
School Management database.
Execute following command once access is given to the user.
FLUSH PRIVILEGES;
To make all the changes effective
If administration doesn't want to give all the privileges to user '14EEACS350',
then to give access to read only,
GRANT SELECT ON School Management.Student TO '14EEACS350' @
'localhost' IDENTIFIED BY '123456";

To give privileges of insertion in Student table

GRANT INSERT ON School Management.Student TO '14EEACS350' @
'localhost' IDENTIFIED BY '123456';

Like above example, other privileges can be given to the users. Below is the
screen shot for assigning privileges insert and select to new user.

B8 CyWindows\oystem3Zicnd oy oot N =S |

wxampplite mysgl

pplitesmysglred bin
Ixnbin2nysgl -u root -p

Commands end with ; or “g.

' to clear the current input statement.

ysgl» create use "14EE alhozst® identified by *123456° ;
¥ OK. B rows affec

rant gselect on school.student to "14EEACE354" B* localhoszt® identified by
_.Iﬁ rows affected {B.B3 secd

Grant insert on school.student to "14EEACS35%4" B localhost' identified by

_.1H rows affected {B.B@ zec?

Figure 3 Screen shot of privileges assigning to new user

User '14EEACS350' is only given privileges to inert and select. So this user is
allowed to perform select and insert on student table and not any other
operation.

To see this we first logout by entering QUIT command and then again go for
new login

MySQL-u[new username]-P;

(191)

MySQL> MySQL-u 14EEACS350-P;
Enter password :123456;
And then perform different command on Student table following are some

screen shots.

- . S
B C:\Windows\system3Z\cmd | -u 14EEACS354 -p i E=2E X
Query 0K, B r affected <B.08 » =

1> guit

li nysigl<bindmysgl -u 14EEACEIS4 -p
(TS LR
Welcome to the HySQL monitor. Commands end with ; or “g.
L = HySQL conne n id iz 6
sion: 5.1.41 Source distribution

fFor help. Type LY ar the current input statement.

(192)

= CA\Windows\system 32 cmd.exe - mysql -u 14EEACS354 -p

sec)

nraysgl -u 14EERACS354 -p
Commands end with § or “g.
e distribution

Tupe "help:’ or "“h' For help. Type "' to clear the current input statement.

th
Bth
11th

insert into stud
1 row affecte

kail
}HI Al

r roll_no=68;
nd denied te user '14EEA 4" @' localbost' Ffor t

REVOKE command :- This command is used to take back the privileges
from any object(table) and its syntaxes are same as to GRANT command.
Syntax:- REVOKE [type of permission] ON [database name].

[table name] FROM '[user name]'@'localhost';

For example :- DROP can be used to eliminate any user.

DROPUSER '"14EEACS350' @'localhost';

Example:-

REVOKE DELETE ON Student FROM 14EEACS350;

COMMIT command :- It is used to make the changes permanent in the
database i.e. if any change apply to the database is committed by commit

(193)

command. By default auto commit mode is enabled in MySQL i.e. if any
changes or updating of a table occurs, then that updating is stored on MySQL
disk to make it permanent. We can disable auto commit by START
TRANSACTION.

ROLLBACK:- the rollback undo all the transaction to a certain
checkpoint before failure has occurred. In case of cascaded rollback there
are multiple failure due to single failure which causes multiple times of
rollback in different transaction.

Introduction to SQL operators :- These are reserved words which are used
in WHERE clause of any SQL query. Main operators are :-

(1) Comparison

(i) Arithmetic

(111)) Logical

(iv) Operators used to negate the condition.

SQL comparison operators:-

Operators Description

=) this operator 1s used to check the equality or non equality
of two operators. Condition is true in case of equality.

(<>or!=) this operator is used to check the equality or non equality
of two operators. Condition is true in case of non
equality.

>) if the value of left hand side operator is greater than right
hand side operator then condition is true.

<) if the value of left hand side operator is less than right
hand side operator then condition is true.

=) if the value of left hand side operator is greater than or
equals to right hand side operator then condition is true.

(<= ifthe value of left hand side operator is less than or equals

to right hand side operator then condition is true.

SQL Arithmetic operators:-

Operators Descriptions

(+) used to add left hand side operand and right hand side
operand.

(-) used to subtract the value of right hand side operand from
left hand side operand.

(*) used to multiply left hand side operand and right hand

side operand.

(% or modulus) Right hand side operand divides left hand side operand
(194)

To understand arithmetic and comparison operators consider the following

and return remainder as a result.

student, teacher and classes table as example:-

Student
Roll No Name Age Address Class
109 Omprakash | 9 Jodhpur 4th
111 Prakash 15 Jaipur 10th
91 Suman 11 Jaipur 6th
75 Shanker 13 Ajmer 8th
Teacher
Tname Address Salary PhoneNo
Radha Kerla 3000 1234567899
krishnan
Rajesh Jodhpur 5000 9413962123
Lalaji Ajmer 9000 9312171080
Hariom Kerla 40000 5189310510
Classes
Class_name CroomNo CStrength
12th F-1 90
6th F-17 65
9th S-21 110
Figure 4 Student, Teacher and classes table
Example 1.
SELECT * FROM Student, WHERE Age=15;
Output ->
Roll No Name Age Address Class
111 Prakash 15 Jaipur 10 th

Because there is only one row with Age=15 in student table

Example 2.

SELECT * FROM Student, WHERE Age>11;

Output ->

(195)

Roll No Name Age Address Class
111 Prakash 15 Jaipur 10 th
75 Shanker 13 Ajmer 8th

Example 3.

SELECT * FROM Student, WHERE Age <=13;

Output ->
Roll No Name Age Address Class
109 Omprakash 9 Jodhpur 4th
91 Suman 11 Jaipur 6th
75 Shanker 13 Ajmer 8th

SQL Logical operators:-

Operators Description

AND aAND bis trueifboth(aand b) of them is true.

OR aORbistrueifeitheraorbistrue.

For example:-

Consider atable Teacher

(1) SELECT Tname , Salary FROM Teacher WHERE Salary <= 5000 and

Salary >=4000;

Output ->

Here in this example only one record is available where both the conditions,

Tname

Salary

Rajesh

5000

Salary <=5000 and Salary >=4000 is satisfied.

(i) SELECT Tname , Salary, FROM Teacher, WHERE Salary <= 5000 OR

Address=“Kerla”;

Output ->

Here in this example there are three entries are found as a result because both
conditions Salary<=5000 and second condition address=" Kerla” are true for

Tname Salary
Radha krishnan 3000
Rajesh 5000
Hariom 40000

(196)

two rows. So results will be found as above.

Operators Descriptions

Not(!) Itinverts the value of'an operand.

Example

SELECT * FROM Student WHERE !(Roll No=111);

Output ->
RollNo Name Age Address Class
109 Omprakash 9 Jodhpur 4th
91 Suman 11 Jaipur 6th
75 Shanker 13 Ajmer 8th

Above query returns all the records excluding the records containing Roll No
=111.

Operators Descriptions

BETWEEN It actually search value between two values of attribute.

Example :-
SELECT Tname , Salary FROM Teacher WHERE Salary BETWEEN 3000
and 5000;

Output ->
Tname Salary
Radha krishnan 3000
Rajesh 5000
Operators Descriptions
ANY this operator is used to compute a value to the other values in the
list.

Syntax:- ANY operator can has following syntax
<ANY,<=ANY,>=ANY, =ANYand <>ANY
Example - If say value 5 is to be compared with other values in the list

0

5

6
Then resulting relation using ANY:-
Expression Result Remark
(1)5>ANY {0,5,6} True because 5 is greater than 0

(197)

(11)5=ANY{0,5,6} True because 5 isequal to 5

(11)5<ANY {0,5,6} True because 5 is smaller than 6

(iv) 5>ANY {5,6} False because 5 is not greater than 6
Thatis ,ANY operator give result true for ““ at least one” condition.
Operators Descriptions

ALL Using this operator, one value can be compared with all the other
values of any other list. It implies that ALL operator gives a true only if

condition is true for all the values in list.
Syntax :-<ALL, >ALL,<=ALL, >=ALL,=ALL

Example:-

Expression Result Remark
(1)5<ALL{5,6} False because 5 is not less than all values
(11)5>ALL{0,3} True because 5 is greater then all values
(111)5<=ALL{5,6} True because 5 is less then 6 & equal to 5

Above operator will also be used in subqueries.

Operators Description

LIKE this operator is used for pattern matching in any string
Patterns can be described by following two specific characters:-

Underscore(): thischaracter() is used to match any character .

Percent (%): this character is used to match any sub string.

Pattern matching is case sensitive in some database unlike MySQL i.e.
uppercase character(B) matches lowercase character(b) and vice versa.
Example 1:-if we want to retrieve all the names starting from S then query can
be written as

MySQL>SELECT * FROM Student WHERE Name LIKE 'S%";

(198)

Output ->

Roll No Name Age Address Class
91 Suman 11 Jaipur 6th
75 Shanker 13 Ajmer 8th

Example (2): Names ending with “sh”;

MySQL>SELECT * FROM Student WHERE Name LIKE '%sh';

Output ->
Roll No Name Age Address Class
109 Omprakash 9 Jodhpur 4th
111 Prakash 15 Jaipur 10 th
Example 3: Find all the names consist of 5 characters
MySQL>SELECT * FROM Student WHERE Name LIKE '-----';
Output->
Roll No Name Age Address Class
91 Suman 11 Jaipur 6th

Ifa special character (%,)is to be added in some pattern then escape character
(\) Backslash is to be used by placing it before the special character.
Example:-

o LIKE 'BI\%BHARAT%' will match all the string starts with BJ%BHARAT

e LIKE'BJ\\BHARAT%' will match all the string starts with BJ\BHARAT
SQL NOT LIKE is used to find mismatches. Extended regular expression are
used for pattern matching in SQL which are of two types . REGEXP(RLIKE)
and NOT REGEXP(NOTRLIKE).
“[...]”1s acharacter class which matches any character inside the bracket.
Example “[pqr]” matches “p”,”q” or “r”

“[a-z]” matches any letter

Operators Descriptions
ISNULL thisoperatoris used to compare any value witha NULL value .
If no value exist in any field of an attribute than NULL value is used to
represent it.
Example:-ifno PhoneNo exits for a teacher in teacher table then, there would
be a NULL value and for testing of that key word NULL is used in Mysq]l

Example:- SELECT Tname FROM Teacher WHERE PhoneNo IS
NULL;

Operators and NULL values :-

Operator Valuel Value2 Output
+,-, %, or/ value NULL NULL

(199)

+,-,*or/ NULL value NULL

> < >= <= <> NULL value unknown
<> o= <= = value NULL unknown
AND true unknown unknown
AND false unknown false
AND unknown unknown unknown
OR true unknown true

OR false unknown unknown
OR unknown unknown unknown
NOT unknown unknown unknown

That is, if result of predicate in WHERE clause is false or unknown than no
tuple displays in result.

NOTE:- all aggregate function except (count(*)) will ignore the NULL value
as their input calculation .

SET Operators:- setoperations are applied to the relations are as follows:-
(i) UNION

(i) UNIONALL

(iii) INTERSECT

(iv) EXCEPT

UNION set operator :- This operator is used to combine the result set of two
or more than two SELECT statement. It removes duplicate tuples.

NOTE :-UNION can be applied to only those relations which have same
number of fields and their data type must also be same.

Syntax:- MySQL UNION operator syntax is

SELECT ex1, ex2,... ,ex, FROM tables [WHERE condition]

UNION [DISTINCT]

SELECTex1,ex2,... ex, FROM tables WHERE condition;

Here,DISTINCT keyword is not required because UNION itself removes the
duplicates.

Example:-

SELECT Class FROM Student
UNION

SELECT Class_name FROM Classes;
Output ->

(200)

Class
4th
10th
6th
8th
12th
9th

Here in this example there is only one field 1.e. SELECT statement return only
one field. Data types of both the fields are same. Column name of return
relation will be the name of first SELECT statement column name because we
know that UNION will remove all duplicates that's why value 6th occur only
once in the relation. But if want to keep all duplicates tuples then we will use
UNIONALL.

Syntax :- Syntax of UNION ALL is same as the syntax of UNION what
matters is that UNION ALL IS written instead of UNION.

SQL INTERSECT operator:- It is used to return a relation which contains
the tuples common to given relations i.e. if there exist any tuple in two or more
than two relation than that common tuple will be the result of intersection of
the two relations.

Example:-

SELECT Class FROM Student

INTERSECT

SELECT Class_name, FROM Classes;

Output ->

Class
6th

Note:- Intersection is not available in MySQL but can be done through IN
OPERATOR.

Syntax:-

MySQLIN OPERATOR syntax

Expression IN(valuel , value2, ...value,);

Here, expression is value which we want to test and valuel,value2,...valuen
are values in which we have to test the value.If any value matches the test value
then IN OPERATOR returns true.

SQL EXCEPT operator :- it combines two SELECT statement and return a
relation which contain those tuples of first SELECT statement which are not in

(201)

the second SELECT statement.

Syntax:-

SELECT column names FROM tables [WHERE clause]

EXCEPT

SELECT column names FROM tables WHERE clause;

EXCEPT operator is not available in MySQL but to fulfill the needs NOT IN
operator is used.

SQL functions :- Many built in functions are available in SQL which are as
follows:-

(i) Date and Time function:- date and time functions and there description
which are used in MySQL are as follows:-

Function name description

ADDDATE() to add dates

ADDTIME() to add times

CURDATE() return a present date
CURTIME() return current time

DATE SUB() subtracts two dates

NOW() itreturn present date & time
STR TO_DATE() itchanges string into date

Example 1. Syntax:- SELECT ADDDATE(expr, days)
MySQL>SELECTADDDATE('1980-07-01',32);
Output -> 1980-08-02

Example 2. Syntax:- SELECTADDTIME(expr2, exprl)

Here exprl is added to expr2

MySQL>SELECT ADDTIME('1999-12-31 23:59:59.999999",
'11:1:1.000002");

Output->2000-01-0201:01:01.000001

Example 3.

CURDATE syntax :- SELECT CURDATE();

Return presentdate in YY'YY-MM-DD format.

String function :- useful string functions of MySQL are as follows:-

Name description

ASCII() return a numeric value of left most character
BIN(N) return a string representation of binary value of N
BIT LENGTH(str) return the length of string in bits

(202)

CHAR(N)

CHAR_LENGTH(Str)
CONCAT(Str1,Str2,...)

FIELD(Str,Str1,Str2,...)

LOAD FILE(file name)

this function consider each argument N as
aninteger andgivesits string represent.
This string is the combination of all those
characters which are passed as an
argument.

it measure the string length in characters.
augmented strings are concatenated and
return as result.

it return an index of string str from the
given list, if string is not obtained than
result will be 0.

read the file and return its contain in the
form of string. To use this path to that file
must be specified.

REPLACE(Str, from_Str,to_Str) itreturns a string str after removing all the

occurrences of from_Str and replace it by
to_Str.

There are many functions in MySQL except the listed ones.
Examplel:- MySQL>SELECT ASCII('3")

Output ->

ASCII(3)

51

Example2:- MySQL>SELECTBIN(2)

Output->10

Example3:- MySQL>SELECT BIT LENGTH('BHARAT")

Output ->

BIT LENGTH(‘BHARAT)

Example4:- MySQL>SELECT CONCAT('BH',A',GAT',','SI''NGH')

Output -> BHAGAT SINGH

Example5:- MySQL> UPDATE Student SET Address=
LOAD FILE('pathname') WHERE Roll No=105 ;

Example6:- MySQL> SELECT CONCAT(Roll No, Name, Class) FROM

Student

(203)

Output ->

CONCAT(@Roll No, Name, Class)
105hari9th
50gopal9th
60gopi8th
109kailash11th

Example7:- MySQL>SELECT CHAR(66,72,65,82,65,84)
Output->

CHAR(66,72,65,82,65,84)
BHARAT

RAND function:- Is used to generate any number randomly between O to 1 in

MySQL.

Example :- MySQL>SELECT RAND(), RAND();

Output->RAND() RAND()
0.03014567845357

0.93969467893221

SQRT function :- Itis used to calculate the square root of any Number.

Example :- MySQL>SELECT SQRT(64)

Output ->

SQRT
8

If square root of Salary field is calculated from Teacher then this is done as
follows-
MySQL>SELECT Tname, SORT(Salary)

FROM Teacher
Output->
Tname Salary
Radha Krishnan 54.77225575051 66
Rajesh 70.7106781188548
Lalaji 94.8683298050514
Hariom 200

Numeric functions:- these functions are used in mathematical operations.

(204)

Few important functions are listed.

Function Description

(1)ABS(V) itreturns a full value of function V

(1)) GREATEST(nl,n2,...) it return the greatest value among
the parameter list values.

(111)INTERVAL(N,n1,n2,n3,----) it compairs the value of N to the

values(nl,n2.....) one by one if
N<nlit return 0 else return 1 for
N<n2 and return 2 For N<n3.

(iv) LEAST(N1,N2....) Itisainverse of GREATEST

Example(1) MySQL>SELECT ABS(-6);
Output ->

ABS(-6)
6

Example(2) MySQL>SELECT GREATEST(4,3,7,9,8,0,10,50,70,11)
Output ->

GREATEST(4,3,7,9,8,0,10,50,70,11)
70

Example(3) MySQL>SELECTINTERVAL(4,3,5,8,11,12,17,18)
Output ->

INTERVAL4,3,5,8,11,12,17,18)
1

Aggregate functions:- This function accepts collection of values as an input
in MySQL and return a single value as an output . There are five types of built in
aggregate function in MySQL.

AVERAGE: Avg()
MAXIMUM: Max()
MINIMUM: Min()
TOTAL: Sum()
COUNT: Count()

Here input to the function Sum and Average must be numbers while other
operators can work on string also.

Avg() function: This function is used to calculate the average value of given
field values.

Example:- MySQL>SELECT Avg(Salary) FROM Teacher;

(205)

Output->

Avg(Salary)
14250.0000

In above example Avg() function return the average value of Salary field
values.

Sum() Function: This function return the Sum of all the values of any fields.
Example:- MySQL>SELECT Sum(Salary) FROM Teacher;

OUTPUT->

Sum(Salary)
57000

Max() function:- return the maximum value among the value of any record set
Example :- MySQL>SELECT Max(Salary) FROM Teacher
Output->

Max(Salary)
40000

Min() function:- It returns record with minimum value.
Example :- MySQL>SELECT Min(Salary) FROM Teacher
Output->

Min(Salary)
3000

Count() function :-it is used to count the number of records in the table i.c.
total number of records can be calculated.

Examplem1:- SELECT Count (*) FROM Student

Output ->

Count(*)
4

Example2 :- SELECT Count (*) FROM Student WHERE Class="9th”
Output ->

Count(*)
2

SQL ORDER BY clause:- to sort the rows in proper order “ORDER BY”
clause is used or by this clause we can sort any columns value either in
ascending or descending order.

Syntax:-

SELECT fieldl,field2....filedn FROM TI1,T2...Tn ORDER BY fieldl,

(206)

field2....filedn [Asc[Desc]];

Clause can be applied to many number of fields for which keyword Asc and
Descisused . Asc stand for ascending and Desc stands for descending.
Example 1:- MySQL> SELECT Roll NO, Age FROM Student ORDER BY
Age Desc;

Output:-
Roll No Age
109 19
105 14
50 13
60 13

Example 2:- MySQL> SELECT Roll NO, Age FROM Student ORDER BY
Age Desc, Roll No Desc;

Output:-
RollNo Age
109 19
105 14
60 13
50 13

Example:- Query :- find all the students who sits in room number F-17
MySQL> SELECT Name FROM Student, Classes WHERE
Class=Class name AND CRoomNo="F-17" ORDER BY Name Asc;
In this example many tables are used because we required information from
different tables. Like student name can be retrieve from Student table and
CRoomNo field can be retrieved from Classes table. Both the tables are joined
by their primary and foreign key. Because both the keys are same for the table
i.e. tables are linked through their keys. Two tables are joined by a field which
is common to the table. Here ORDER BY clause is used because desired result
must be in increasing order.
Output->Students who want to sitin F-17

Name

SQL GROUP BY clause:- It is useful clause of MySQL. Many important

(207)

queries can be written by this clause. Collection of values of one or many
columns can be grouped by this clause that is attributes mentioned in group by
clause are used to form groups. Attributes or attributes values which are same
for all tuples will represent a single group.

This clause can be understood by following example of student table:

Roll No Name Age Address Class
1 Ajay 9 Jaipur 4th
2 Vijay 17 Kota 12th
10 Hari 11 Udaipur 7th
17 Shanker 13 Jaipur 8th
21 Om 21 Ajmer 12th
51 Mayank 15 Ajmer Oth
90 Anju 18 Ajmer 11th
53 Suman 12 Ajmer 10th
64 Kamal 10 Kota 4th
500 Komal 16 Udaipur 9th
700 Aryabhatt 11 Jaipur 7th
900 Bodhayan 13 Jodhpur 8th
Figure 5 Student table

Example:- Query : find the number of student in each class

If we write the syntax like that then result obtained will be wrong.
MySQL>SELECT Count(*) FROM Student

Output->

Count (*)
12

By above query result will show the total number of student i.e. total number of
students in the table is same as the total number of student in the school.
Therefore it returns the total number of tuples in the relation. For appropriate
result GROUP BY clause is used with Count aggregate function and syntax is
MySQL> SELECT Class, Count(Roll No) FROM Student GROUP BY
Class;

After grouping Student table can be depicted as given below because group is
making by Class attribute in GROUPBY clause so tuples with same Class will
be displayina group.

Output ->

(208)

The column by which group is made , any calculation like Count, Avg, Max,
Min etc can be applied by aggregate function. Therefore in this query Count
aggregate function can be applied for each groups tuples having same class
value because there are only two fields in SELECT statement so following

Class Roll No Age Name Address
11th 90 18 Anju Ajmer
12th 2 17 Vijay Kota
12th 21 21 Om Ajmer
10th 53 12 Suman Ajmer
9th 51 15 Mayank Ajmer
Oth 500 16 Komal Udaipur
8th 17 13 Shanker Jaipur
8th 900 13 Bhodhayan Jodhpur
7th 10 11 Hari Udaipur
7th 700 11 AryaBhatta | Jaipur
4th 1 9 Ajay Jaipur
4th 64 10 Komal Kota

Class Count(Roll No)

10th 1

11th 1

12th 2

Oth 2

8th 2

7th 2

4th 2

result are obtained.

Note :- any attribute which occur outside the aggregate function in SELECT

Class

Count(Roll No)

10th

11th

12th

9th

8th

7th

NN [N [[—

4th

(209)

statement are written inside the GROUP BY clause.

For example-> Class attribute which appears in SELECT statement will also
be in GROUPBY clause.

Example 2:- Name all the classes in which number of student are more than 1.
Syntax:-

MySQL> SELECT Class, Count(Roll No) FROM Student GROUPBY Class
HAVING Count(Roll_No);

Output->

Class Count(Roll No)
12th
Oth
8th
7th
4th

(NS I O) | \OF | [} | \S)

Above output contains only those tuples whose count is more than 1. To check
condition for a single tuple in SQL can be done by using WHERE clause But
to see the condition for tuples in the groups made by GROUP BY clause,
HAVING clause is used. This is the main difference between WHERE and
HAVING clause.

Predicate of HAVING clause are applied after making the group by GROUP
clause. Therefore aggregate function can also be used with it.

Note:- If WHERE, HAVING, GROUP BY occur simultaneously than
predicate is applied to WHERE clause first after that all the tuples for which
condition is satisfied will be kept in the same group by group clause. At the end
having clause is applied for each group. Groups which don't fulfill the
condition of having will be extracted.

SQL RENAME operation:- Name of any relation and attributes can be
changed by RENAME operation using 'AS' clause. It is used for renaming and
syntax is.

Old_relation/ attribute_name as new_name 'AS' clause can be used in both
SELECT and FROM statement.

Examplel:- MySQL>SELECT Avg(Salary) AS AvSalary FROM Teacher;

AvSalary
14250.0000

Example 2:- MySQL> SELECT Class, Count(Roll No) AS total, FROM
Student GROUPBY Class;
Output->

(210)

Class

total

10th

11th

12th

9th

8th

7th

4th

N[NNI | —=|—

SQL JOIN:- JOIN keyword is used to combine two or more than two tuples
from the given relation. In joins two relations are taken as input and return a
single relation as an output.

There are many mechanisms to perform joins:-

(1) Cartesian product mechanism

(2) Innerjoin

(3) Outerjoin (left, right, full)

Every join type stated earlier also has one Join condition with it. So each Join
expression is consists of a Join type and a Join condition which is used in
FROM clause.

To understand the operation of Join we consider two tables, Student given in
figure 5 and Classes table of figure 6

Class_name CRoomNo CStrength
12th F-1 90
11th F-2 75
10th F-5 99
9th S-21 110
8th S-10 70
7th F-10 85
6th F-17 65
5th F-7 60
4th F-9 55
3th F-8 50
2th S-15 35
1th S-9 60

Figure 6 Classestable instance

We write a query to join the Student and Classes table
MySQL> SELECT Roll No, Class, CStrength FROM Student AS St, Classes

AS S, WHERE St.Class=S.Class_name;

@11)

Here Student is renamed as St and Classes as S. Cartesian product is applied to
both the relation where each tuple of St is joined with each tuple of S. So total
number of tuples in resultant relation is.
N1*N2=12*12=144
Here N1 is total number of tuples in St table and N2 is the total number of
tuples in S table but result relation contains only those tuples which fulfils the
condition of WHERE clause.
OUTERJOIN OPERATIONS:- These are of following types.

e LEFTOUTERJOIN

e RIGHTOUTERIJOIN

e FULLOUTERIJOIN

Following join condition are used with Outer Joins:-

1) Natural

2) ON (Predicate)

3) Using (A1,A2,....... An)

Left outer join and ON Join condition:-Two Understand this consider two
tables

Classes

Class name CRoomNo CStrength
12th F-11 90

9th S-21 110

7th F-10 85
4th F-9 55

Admission
Class_name Roll No admission_date
12th 79 2000/7/15
9th 89 2010/8/13
6th 69 2012/7/21
S5th 49 2013/7/03
Figure 7 Classes and Admission relation
Syntax:-

Select Classes, Class Name, Roll No, CStrength From Classes Left OuterJ

oin Admission on Classes.class Name=Admission.Class Name

Here Name of Relation is written with it's attribute because Name of attributes

(212)

is common in both the relation so to avoid the ambiguity we have written name
ofrelation along with attribute name.

Output
Class name Roll No CStrength
12th 79 90
Oth 89 110
7th Null 85
4th Null 55

Matching tuples of both the relation and unmatched tuples of left side relation
are present in the result relation.

RIGHT OUTER JOINAND ON JOIN CONDITION:-

Syntax:

Classes Right Outer Join admission on

classes.Class Name=Admission.ClassName

Output

Class CRoom | CStength |Class_ Roll | Admission
Name No Name No date

12th F-11 90 12th 79 2000/7/15
9th S-12 110 9th 89 2010/8/13
Null Null Null 6th 69 2012/7/21
Null Null Null Sth 49 2013/7/03

Right outer Join is as same as left outer join but the only difference is that
unmatched tuples of R.H.S relation of Join operation will be present in the
resultrelation. Null value is assigned for the attributes of left relation.
Full-outer join ON condition:-

Syntax:

Classes full outer join admission on classes. Class Name = Admission.
Class Name

Class_ CRoom CStrength | Class Roll | Admission
Name No Name No date

12th F-11 90 12th 79 2000/7/15
9th S-12 110 9th 89 2010/8/13
7th F-10 85 Null Null | Null

4th F-9 55 Null Null | Null

Null Null Null 6th 69 2012/7/21
Null Null Null Sth 49 2013/7/03

(213)

Here in result unmatched tuples of both the relation occur and Null Values
for unmatched tuples of other relation is assigned.

Outer Join and Natural condition:- When we perform natural join of two
relation, the number of tuples contain in result relation depends on the
common attributes in both the relation. The common attributes appears first
in result relation with single copy(without duplicate).

Example

Classes Natural right outer join admission
Class CRoom CStength Roll Admission
Name No No date
12th F-11 90 79 2000/7/15
9th S-12 110 89 2010/8/13
6th Null Null 69 2012/7/21
Sth Null Null 49 2013/7/03

Other outer joins for natural join condition can also be obtained like above
Inner join :- Example-

Classes inner Join Admission On Classes.Class Name=

Admission.Class Name;

Output->
Class CRoom CStength | Class_ Roll | Admission
Name No Name No date
12th F-11 90 12th 79 2000/7/15
9th S-12 110 9th 89 2010/8/13
Inner join and natural condition:-
Example :- Classes Natural Inner-Join Admission
Output ->
Class Name CRoomNo CStength | Roll No [Admission date
12th F-11 90 79 2000/7/15
9th S-12 110 89 2010/8/13

Here only one Attribute is common to both the relation, therefore Join is
performed by that attribute only.

Note:- Join condition USING is also same as Natural Join only joining
attributes in USING will be (A1,A2,...An) rather than all common attribute
present in both relation which is the basic difference between using and natural
join condition.

SQL Sub queries:- A sub query is a SQL query which is nested within another
(214)

query. A sub query can also be nested within another sub query. Sub query is
called the inner query and the query in which a sub query is nested is called the
outer query.

Example:- Inner query
/ SELECT Roll No
FROM Student
Outer query WHERE Class IN (SELECT Class_name
FROM Classes);

The value return by a sub query can also be compared using comparison
operators (=,>=,<= etc).

For example :- To understand this we use the Teacher table

SELECT Tname, Salary FROM Teacher WHERE Salary= (SELECT
Max(Salary) FROM Teacher);

Output ->

Tname Salary
Hariom 40000

Example 2:- Query- Find the name of teacher having salary, less than the
average salary of all teacher

SELECT Tname, Salary FROM Teacher WHERE Salary< (SELECT
Avg(Salary) FROM Teacher);

Output ->
Tname Salary
Radha krishnan 3000
Rajesh 5000
Lalaji 9000
Important Points:

e A schema of a database is the logical design of a database , which is
rarely changed.

e A collection of data or information stored in a table at any particular
moment of time is called the database instance.

e Primarykey :ltisasetof one or more attributes (field) of a table which

(215)

can be used toidentify uniquely any row or tuples of that table.

Referential integrity can be ensured by foreign key constraints.

SQLis acombination of relational algebra and relational calculus.

Auto_incrementis used toincrease the value of afield by 1.

GRANT ALL Privileges ON *.* TO 'new_user @ 'localhost'; This

command gives permission to read, write ,execute and to perform all

the operations on all the databases and tables.

e Attributes mentioned in group by clause are used to form groups.
Attributes or attributes values which are same for all tuples will
representasingle group.

e There are many mechanisms to perform joins e.g. Cartesian product
mechanism, Inner join and Outer join (left, right, full).

Practice Questions

Objective type questions:
Q1. Which one is not a SQL clause?

a) Select b) From

c) where d) condition
Q2. Full form of SQL is

a) Structure Question language

b) syntax question language

c) Structure query language

d) Structure question language
Q3. DDL stands for.

a) Data definition language

b) Dual data language

c) Data data language

d) none of these
Q4. Count() is a

a) String function b) numeric function

c) both d) not exist
Q5. Like operator is used for

a) Concatenating strings b) count string character

c) string matching d) all

Very Short answer type questions.

Q1. What is SQL?
Q2. What do you understand by SQL from clause?

(216)

Q3. What is the importance of SQL select clause?

Q4. Give names of types of SQL.

Q5. What is the difference between unique and primary constraints?
Q6. Define database instances.

Q7. How we use order by clause in SQL.

Q8. What is NULL in SQL?

Q9. What do you mean by aggregate functions?

Q10. Why we use SQL grant command.

Short answer type questions:

Q1. What is the basic structure of SQL?

Q2. What are the various DML commands? Give syntaxes for them.
Q3. What is foreign key? How we create a foreign key in a table?
Q4. Explain use of group by clause in SQL with example.

Q5. What is the difference b/w Cartesian join and natural join.

Essay type questions:

Q1.Explain SQL joins with taking suitable examples of tables.

Q2. What are aggregate functions? How we use aggregate functions? Give
an example of each.

Q3. Explain the use of where, group by and having clause in a single SQL
query? Give a suitable example.

Q4. Consider following schema given.

students(Roll no, Sname, age, phone, address, class)
Classes(Class_name, CRoomNo, CStrength) and write an SQL syntax for.
1) Find student names of those 5" class students sitting in room number F-
12.

2) Find number of students of 10" class living in Ajmer.

Q5. What do you mean by Sub queries? Why sub queries are useful.
Explain use of sub queries in set comparison.

Answers key for objective questions

Ql:d Q2: ¢ Q3:a Q4:b Q5: ¢

(217)

Chapter 15
PL/SQL

Basics of PL/SQL

PL/SQL stands for Procedural Language extension of SQL. Procedural features of
programming languages are incorporated with SQL that forms PL/SQL. It is
developed by Oracle Corporation to enhance the capabilities of SQL.

A Simple PL/SQL Block:
A PL/SQL block consist of two things SQL and PL/SQL statements. These two
are used to design a PL/SQL program

PL/SQL Block consists of three sections:

The Declaration section (optional).

The Execution section (mandatory).

The Exception Handling (or Error) section (optional).

Declaration section

This section of a PL/SQL Block which is a Optional section starts with the reserved
keyword DECLARE. Purpose of the section is to declare placeholders like constants,
records, variables and cursors. These placeholders are used to manipulate data in the
execution section. Placeholders may be any of Variables, Constants and Records,
which stores data temporarily. Cursors are also declared in this section.

Execution Section

This section of a PL/SQL Block starts and ends with the reserved keywords
BEGIN and END respectively. The execution section is a mandatory section and
where the logic of a program is written to perform any task. The programmatic
constructs like loops, conditional statement and SQL statements forms the part of
execution section.

Exception Section

This section of a PL/SQL Block which is optional section starts with the reserved
keyword EXCEPTION and used for handling the errors in the program. If we use
the PL/SQL Blocks then Blocks terminates with desired output.

Structure of PL/SQL Block
DECLARE
Variable declaration
BEGIN
Program Execution
Exception

(218)

Exception handling
END;

A SIMPLE PL/SQL CODE BLOCK THAT DISPLAYS THE WORD
BHARAT

SQL> set serveroutput on

1 SQL> begin

2 dbms_output.put line (BHARAT");

3 end;

4 /

BHARAT

PL/SQL procedure successfully completed.

Let's discuss some important points of the PL/SQL program are:

A section of PL/SQL code block starts with the keyword Begin and is terminated
with the keyword End, called the executable portion of PL/SQL block.

PL/SQL code blocks are comprised of statements. Each statement ends with a semi-
colon.

PL/SQL code blocks are followed by a slash (/) in the first position of the following
line as given above. This causes the code block statements to be executed.

Advantages of PL/SQL: Some advantages of PL/SQL block are:

Block Structures: InPL/SQL, blocks of code can be nested within each other. Each
block is responsible for a unit of a task or a logical module. PL/SQL Blocks can be
stored in the database and reused.

Better Performance: Because of processing the multiple SQL statements
simultaneously by a PL/SQL engine as a single block, resultant performance is better
and reducing network traffic.

Procedural Language Capability: To make it to become power full language
PL/SQL consists of procedural language constructs such as conditional statements (if
else statements) and loops like (FOR loops).

PL/SQL Placeholders:

Placeholders provide storage area to store data temporarily, which are used to

manipulate data during the execution of a PL/ SQL block. PL/SQL Placeholders
can be any of Variables, Constants and Records

Placeholders in PL/SQL :
Placeholders can be defined with a name and a datatype. This definition depends on
the kind of data you want to store. Some of the datatypes used to define placeholders
are, Number (n,m), Char (n), Varchar2 (n), Date , Long , Long raw, Raw, Blob, Clob,
Nclob and Bfile.

(219)

PL/SQL Variables:

These are placeholders that store the values that can change through the PL/SQL
Block.

General Syntax to declare a variable is:

variable name datatype NOT NULL :=value |;

variable name is the name of the variable.

datatypeisavalid PL/SQL datatype.

NOT NULL is an optional specification on the variable.Value or DEFAULT value is
also an optional specification, where you can initialize a variable. Each variable
declaration is a separate statement and must be terminated by a semicolon.

For example, if you want to store the current salary of a teacher, you can use a
variable.
DECLARE
salary variable number (6);
“salary variable” is a variable of datatype NUMBER and of length 6.
when a variable is specified as NOT NULL We must initialize the variable when it is
declared.
For example: The below example declares two variables, one of which is a not null.
DECLARE
salary variable number(4);
address varchar2(10) NOT NULL :=“ajmer”;
A variable can changes its value in the execution or exception section of the PL/SQL
Block when values assign to variables in the two ways given below.

e Wecandirectlyassignvaluestovariables.

The Generic Syntax is:

variable name:= value;

We can assign values to variables directly from the database columns by using a
SELECT.. INTO statement

The Generic Syntax is:

SELECT Column_name INTO variable name FROM table name [where
condition];

Example: The below program will get the salary of a teacher with name
radhakrishnan” and display it on the screen.

DECLARE

salary varnumber(6);

tname _var char(15)=“radhakrishnan”;

BEGIN

SELECT salary INTO salary var FROM teacher WHERE tname =tname _var;
dbms output.put _line(salary var);

dbms_output.put_line("The teacher' || tname var||'has salary '| salary var);

(13

(220)

END;

/

NOTE: The backward slash '/' in the above program indicates to execute the above
PL/SQL Block.

PL/SQL Constants:
If a value used in a PL/SQL Block remains unchanged throughout the program such
value is basically a constant. A constant is a user-defined literal value. You can
declare a constant and use it instead of actual value.
For example: If you want to write a program which will increase the salary of the
teacher by 10%, you can declare a constant and use it throughout the program. Next
time when you want to increase the salary again you can change the value of the
constant which will be easier than changing the actual value throughout the program.
General Syntax to declare a constant is:
name_constant CONSTANT datatype=VALUE;
. name_constant is the name of the constanti.e. similar to a variable name.

e The word CONSTANT is a reserved word used to declare constant.

e VALUE - It is a value which must be assigned to a constant when it is

declared. You cannot assign a value later.

For example, to declare increase_salary, you can write code as follows:

DECLARE
increase salary CONSTANT number (4) := 10;

NOTE: You must assign a value to a constant at the time you declare it. If you do not
assign a value to a constant while declaring it and try to assign a value in the execution
section, you will get a error.

PL/SQL SET Serveroutput ON:
We must have to write the "SET Serveroutput ON" command when we start
PL/SQL.
PL/SQL program execution start into Oracle engine so we always required to get
serveroutput result and display into the screen otherwise result can't be display.
SQL> set serveroutput on
Let's discuss an example to understand the use of serveroutput result. The first line of
the code turn on serveroutput then defining variables and constants. After defining
placeholders dbms output.put line command is used to print defined variables
values.
Example Code :
SQL> set serveroutput on
SQL>DECLARE

Snonumber(4) NOTNULL:=3

Sname varchar2(14) :='Hart';

Sclass CONSTANT varchar2(10) :='9th’;

(221)

BEGIN
dbms_output.put_line('Declared Value:');
dbms_output.put_line(' Student Number:'|| Sno||' Student Name: ' || Sname);
dbms_output.put_line('Constant Declared:");
dbms_output.put_line(' student Class :'|| Sclass);
END;
/
Result display only if you execute "set serveroutput on" command.
Output of above code:
Declared Value:
Student Number: 3 Student Name: Hari
Constant Declared:
student Class: 9th
Conditional Statements in PL/SQL: The type of statements and their syntaxes is
being discussed below.

IFTHEN ELSE STATEMENT: In this IF-THEN —ELSE Statements, When the test
condition is TRUE the statement 1 is executed and Statement 2 is skipped, when the
test condition is FALSE, then Statement 2 is executed and statement 1 is skipped.
Syntaxes:

1)
IF condition
THEN

statement 1;
ELSE

statement 2;
END IF;

2)

IF condition 1

THEN

statement 1;

statement 2;

ELSIF condtion2 THEN
statement 3;

ELSE

statement 4;

END IF

Iterative Statements in PL/SQL.:

When we want to repeat the execution of one or more statements for specified
number of times we use iterative control statements.

There are three types of loops in PL/SQL: The types of loops and their
syntaxes in PL/SQL are.

(222)

Simple Loop
While Loop
For Loop
General Syntax for a Simple Loop :
LOO
Statements;
EXIT;
{or EXIT WHEN condition;}
END LOOP;
While using Simple Loop we should follow some important steps.
e We should always initialize a variable before the loop body.
¢ We should increment the variable in the loop.
e [If we want to exit from the loop we should use a EXIT WHEN statement . If
you use a EXIT statement without WHEN condition, the statements in the
loop is executed only once.

While Loop
In a WHILE LOORP a set of statements executes till the condition is true. The
condition is evaluated at the beginning of each iteration and remains continue
until the condition becomes false.
The General Syntax for a WHILE LOOP :
WHILE <condition>
LOOP statements;
END LOOP;
FOR Loop
In a FOR LOOP a set of statements executes for a predetermined number of times.
Iteration occurs between the start and end integer values given. The value of counter
is always incremented by 1 and loop exits when the counter reaches the value of the
end integer.
The General Syntax for a FOR LOOP:
FOR counter IN from....to
LOOP statements;
END LOOP;
e from - Start integer value.
e to-Endinteger value.

Important steps to follow when executing a for loop:

e The counter variable is implicitly declared in the declaration section, so it's
not necessary to declare it explicitly.

e The counter variable is incremented by 1 and does not need to be
incremented explicitly.

e EXITWHEN statement and EXIT statements can be used in FOR loops but it's

(223)

not preferable.

PL/SQL Cursors: When a SQL statement executes, a temporary work area is to be
created in the system memory called a cursor. The cursor contains information on a
select statement and the rows of data accessed by it.

This temporary work area is used to store the data retrieved from the database, and
manipulate this data. A cursor can hold more than one row, but can process only one
row atatime. The set of rows the cursor holds is called the active set.

Types of cursors in PL/SQL: There are two types of cursors in PL/SQL

Implicit cursor: These are created by default when DML statements like,
INSERT, UPDATE, and DELETE statements are executed. They are also created
when a SELECT statement that returns just one row is executed.

Explicit cursor: They must be created when you are executing a SELECT statement
that returns more than one row. Even though the cursor stores multiple records, only
one record can be processed at a time, which is called as current row. When you fetch
arow the current row position moves to next row. Both implicit and explicit cursors
have the same functionality, but they differ in the way they are accessed.

Example of Implicit Cursors: When you execute DML statements like DELETE,
INSERT, UPDATE and SELECT statements, implicit statements are created to
process these statements. Some attributes called as implicit cursor attributes are
provided to check the status of DML operations. These attributes are %FOUND,
%NOTFOUND, %ROWCOUNT, and %ISOPEN.

For example, when you execute INSERT, UPDATE, or DELETE statements the
cursor attributes tell us whether any rows are affected and how many have been
affected. When a SELECT... INTO statement is executed in a PL/SQL Block,
implicit cursor attributes can be used to find out whether any row has been returned
by the SELECT statement. PL/SQL returns an error when no data is selected.
%FOUND Attribute: The return value is TRUE, if the DML statements like
INSERT,DELETE and UPDATE affect at least one row and if SELECTINTO
statement return at least one row. The return value is FALSE, if DML statements like
INSERT, DELETE and UPDATE do not affect row and if SELECT....INTO
statement do not return a row.

%NOTFOUND Attribute: The return value is FALSE, if DML statements like
INSERT, DELETE and UPDATE affect at least one row and if SELECTINTO
statement return at least one row. The return value is TRUE, if a DML statement like
INSERT, DELETE and UPDATE do not affect even one row and if SELECT
....INTO statement does not return a row.

%ROWCOUNT Attribute: Gives the number of rows affected by the DML
operations INSERT, DELETE, UPDATE and SELECT.

For Example: Consider the PL/SQL Block that uses implicit cursor attributes as

(224)

shown below:
DECLARE rows_varnumber(7);
BEGIN
UPDATE Teacher
SET salary =salary + 100;
IF SQL%NOTFOUND THEN
dbms_output.put_line(' salaries not updated');
ELSIF SQL%FOUND THEN
rows_var :=SQL%ROWCOUNT;
dbms_output.put_line('Salaries for'||rows_var || 'teachers are updated');
ENDIF;
END;

In the above PL/SQL Block, the salaries of all the teachers in the 'Teacher' table are
updated. If none of the teacher's salary are updated we get a message ' salaries not
updated'. Else we get a message like for example, 'Salaries for 100 teachers are
updated' if there are 100 rows in 'Teacher' table.
Explicit Cursors: An explicit cursor is defined in the declaration section of the
PL/SQL Block. It is created on a SELECT Statement which returns more than one
row. We can assign a suitable name for the cursor.
General Syntax for creating a cursor :
CURSOR cursor_name IS select statement;

e cursor_name—Name of the cursor.

e select_statement—Aselect query which returns multiple rows.
Steps to use an Explicit Cursor.

e DECLAREthe cursorinthe declaration section.

e OPENthecursorinthe Execution Section.

e FETCH the datafrom cursorinto PL/SQL variables or records in the Execution

Section.

e CLOSEthecursorinthe Execution Section before you end the PL/SQL Block.
Stored Procedures: A named PL/SQL block which performs one or more specific
task is called a stored procedure or in simple a proc.

A procedure has a header and a body. The header consists of the name of the
procedure and the parameters or variables passed to the procedure. The body consists
of a declaration section, execution section and exception section similar to a general
PL/SQL Block. A procedure is similar to an anonymous PL/SQL Block but it is
named for repeated usage. A procedure may or may not return any value.

Passing Parameters in Procedures: We can pass parameters to procedures in three
ways.

e [N-parameters
e OUT-parameters
e IN- OUT-parameters

(225)

General Syntax to create a procedure :
CREATE [OR REPLACE]PROCEDURE proce name [parameter list]
IS

Declaration section
BEGIN

Execution section

EXCEPTION

Exception section
END;

IS - mark the beginning of the body of the procedure and is similar to DECLARE in
anonymous PL/SQL Blocks. The code between IS and BEGIN forms the Declaration

section.

The syntax within the brackets [] indicate they are optional. By using CREATE OR
REPLACE together the procedure is created if no other procedure with the same
name exists or the existing procedure is replaced with the current code.

Example

The below example creates a procedure 'student _info' which gives the information of
the student.

1> CREATE OR REPLACE PROCEDURE student_info

2>1S

3> CURSOR stu_curIS

4> SELECTroll no, Sname, age FROM Student;

5> stu_recstu_cur%rowtype;

6>BEGIN

7> FORstu recin1..7

8> LOOP

9> dbms_output.put line(stu_cur.Roll no||''[[stu_cur.Sname
10> ||'"||stu_cur.age);

11>END LOOP;

12>END;

13>/

There are two ways to execute a procedure.

1) From the SQL prompt.

EXECUTE [or EXEC] procedure_name;

2) Within another procedure — simply use the procedure name.
procedure name;

PL/SQL Functions:
A function is also a named PL/SQL Block which is similar to a procedure. The major
difference between a procedure and a function is that, a function must always return a

(226)

value, buta procedure may or may not return a value.

General Syntax for a function:
CREATE [OR REPLACE]FUNCTION func_name [parameters list]
RETURN return_datatype;

IS

Declaration_part

BEGIN

Execution_part

Returnreturn variable;
EXCEPTION

exception_part
Returnreturn_variable;

END;

e Return Type: The header section defines the return type of the function. The
return datatype can be any of the valid datatype such as varchar, number etc.
e The execution and exception section both should return a value which is of
the datatype defined in the header section.
For example, let's create a function called "student info func' similar to the one
created in stored proc.

1> CREATE OR REPLACE FUNCTION student_info func
2> RETURN VARCHAR(10);
3> IS
5> stu_name VARCHAR(20);
6> BEGIN
Ies SELECT Sname INTO stu_name
8> FROM student WHERE Roll no="'58'";
9> RETURN stu_name;
10> END;
1> /
In the example we are retrieving the 'Sname' of student with Roll no 58 to variable
'stu_name'. The return type of the function is VARCHAR which is declared in line
no 2. The function returns the 'stu_name' which is of type VARCHAR as the return
valueinlineno9.
Executing a function by.
e Sinceafunctionreturnsavalue we canassignittoavariable.
student name := student info_ func;
If 'student name' is of datatype varchar we can store the name of the student by
assigning the return type of the function to it.
e AsapartofaSELECT statement
SELECT student info func FROM student;

(227)

e InaPL/SQLStatements like,
dbms_output.put_line(student_info func);
This line displays the value returned by the function

Exception Handling: PL/SQL provides a feature to handle the Exceptions which
occur in a PL/SQL Block known as exception Handling. Using Exception Handling
we can test the code and avoid it from exiting abruptly.When an exception occurs,
messages which explain its cause is received. PL/SQL Exception message consists of
three parts.

1) Type of Exception

2) An ErrorCode

3) A message

By handling the exceptions we can ensure a PL/SQL block does not exit abruptly.

Exception Handling Structure

General Syntax for the exception section:
DECLARE
Declaration part
BEGIN
Exception part
EXCEPTION
WHEN exceplname THEN
Error handling statements
WHEN excep2name THEN
Error handling statements
WHEN Others THEN
Error handling statements
END;

PL/SQLstatements in the Exception Block. When an exception is raised, a search
for an appropriate exception handler in the exception section starts. For example in
the above example, if the error raised is 'exceplname ', then the error is handled
according to the statements under it. Since, it is not possible to determine all the
possible runtime errors during testing for the code, the 'WHEN Others' exception is
used to manage the exceptions that are not explicitly handled. Only one exception
can be raised in a Block and the control does not return to the Execution Section after
the error is handled.
DELCARE

Declaration part
BEGIN
DECLARE

Declaration part

(228)

BEGIN
Execution part
EXCEPTION
Exception part
END;
EXCEPTION
Exception part
END;

Ifthere are nested PL/SQL blocks as in the above case, if the exception is raised in the
inner block it should be handled in the exception block of the inner PL/SQL block
else the control moves to the Exception block of the next upper PL/SQL Block. If
none of the blocks handle the exception the program ends abruptly with an error.

Types of Exception. There are 3 types of Exceptions.
1) Named System Exceptions

2) Unnamed System Exceptions

3) User-defined Exceptions

Named System Exceptions

System exceptions are automatically raised by Oracle, when a program violates a
RDBMS rule. There are some system exceptions which are raised frequently, so they
are pre-defined and given a name in Oracle which are known as Named System
Exceptions.

For example: NO_DATA FOUND and ZERO DIVIDE are called Named
System exceptions.

Named system exceptions are:

1) Not Declared explicitly,

2) Raised implicitly when a predefined Oracle error occurs,

3) Caught by referencing the standard name within an exception-handling
routine.

For Example: Suppose a NO_DATA FOUND exception is raised in a proc, we
can write a code to handle the exception as given below.

BEGIN
Execution part
EXCEPTION
WHENNO DATA FOUND THEN
dbms_output.put_line (' Using SELECT...INTO did not get any row.");
END;

(229)

Unnamed System Exceptions

Those system exception for which oracle does not provide a name is known as
unnamed system exception. These exceptions do not occur frequently. These
Exceptions have a code and an associated message.

There are two ways to handle unnamed system exceptions:

1. Using the WHEN OTHERS exception handler, or

2. By associating the exception code to a name and using it as a named exception.
We can assign a name to unnamed system exceptions using a Pragma called
EXCEPTION INIT.

EXCEPTION_INIT will associate a predefined Oracle error number to a
programmer defined exception name.

Steps to be followed to use unnamed system exceptions are

They are raised implicitly.

If they are not handled in WHEN others they must be handled explicitly.

To handle the exception explicitly, they must be declared using Pragma
EXCEPTION _INIT as given above and handled referencing the user-defined
exception name in the exception section.

The general syntax to declare unnamed system exception using
EXCEPTION _INITis:

DECLARE

excep_name EXCEPTION;

PRAGMA

EXCEPTION_INIT (excep_name, Err_code);
BEGIN
Execution part
EXCEPTION

WHEN excep name THEN
handle the exception

END;

User-defined Exceptions

Apart from system exceptions we can explicitly define exceptions based on
business rules. These are known as user-defined exceptions.

Steps to be followed to use user-defined exceptions:

They should be explicitly declared in the declaration section.

They should be explicitly raised in the Execution Section.

They should be handled by referencing the user-defined exception name in the
exception section.

Triggers
Definition: A trigger is a PL/SQL block structure which is fired when a DML

(230)

statements like Insert, Delete, Update is executed on a database table. A trigger is
triggered automatically when an associated DML statement is executed.

A database triggers has three parts-

1. Triggering event(That causes the trigger to be executed)

2. Condition(must be satisfied for trigger execution to proceed)

3. Action(specify the action to be taken when the trigger executes).

Trigger Syntax:
CREATE [OR REPLACE] TRIGGER name_of trigger
{BEFORE |AFTER |INSTEAD OF }
{INSERT [OR]|UPDATE [OR] | DELETE}
[OF name_of col]
ON table name
[REFERENCING OLDAS ONEWASN]
[FOREACHROW]
WHEN (condition)
BEGIN

--- sql statements --
END;

e CREATE [OR REPLACE | TRIGGER name_of trigger — In PL/SQL
to creates a trigger with the given name or overwrites an existing trigger
with the same name we use this clause.

e {BEFORE |AFTER | INSTEAD OF } - This clause indicates at what time
should the trigger get fired. i.e for example: before or after updating a table.
INSTEAD OF is used to create a trigger on a view. Before and after cannot be
used to create a trigger on a view.

e {INSERT [OR] | UPDATE [OR] | DELETE} - This clause determines the
triggering event. More than one triggering events can be used together
separated by OR keyword. The trigger gets fired at all the specified triggering
event.

e |[OF name_of col] - This clause is used with update triggers. This clause is
used when you want to trigger an event only when a specific column is
updated.

e |ON table name] - This clause identifies the name of the table or view to
which the trigger is associated.

e |[REFERENCING OLD AS O NEW AS N] - This clause is used to
reference the old and new values of the data being changed. By default, you
reference the values as :old.column name or :new.column name. The
reference names can also be changed from old (or new) to any other user-
defined name. You cannot reference old values when inserting a record, or
new values when deleting a record, because they do not exist.

e [FOR EACH ROW] - It is used to determine whether a trigger must fire

(231)

when each row gets affected (i.e. a Row Level Trigger) or just once when the
entire sql statement is executed(i.e. a statement level Trigger).
e WHEN (condition) — It is valid only for row level triggers. The trigger is
fired only for rows that satisfy the condition specified.
For Example: The classes of a student changes constantly. It is important to maintain
the history of the classes of the students.

Types of PL/SQL Triggers

There are two types of triggers based on the level on which it is triggered

1) Row level trigger - An event is triggered for each row updated, inserted or deleted.
2) Statement level trigger - An event is triggered for each sql statement executed.

PL/SQL Trigger Execution Hierarchy

The following hierarchy is followed when a trigger is fired.

1) Firstly BEFORE statement trigger fires.

2) Next BEFORE row level trigger fires, once for each row affected.

3) Then AFTER row level trigger fires once for each affected row. This event will
alternates between BEFORE and AFTER row level triggers.

4) Finally the AFTER statement level trigger fires.

Important Points:

e PL/SQL Block consists of the Declaration section, the Execution section
and the Exception Handling section.

e We must have to write the "SET Serveroutput ON" command when we start
PL/SQL.

e Ifyouusea EXIT statement without WHEN condition, the statements in the
loop is executed only once.

e A cursor can hold more than one row, but can process only one row at a time.
The set of rows the cursor holds is called the active set.

e Aprocedure may or may not return any value.

¢ The major difference between a procedure and a function is that, a function
must always return a value, but a procedure may or may not return a value.

e A trigger is triggered automatically when an associated DML statement is
executed.

Practice Questions
Objective type questions:
Q1. Which one is not the part of PL/SQL

a) Declare b) BEGIN
c) Start d) End

Q2. PL/SQL is developed by
a) IBM b) ORACLE

(232)

¢) Microsoft d) none of these
Q3. Which word must be used along with select statement.

a) Goto b) Into
¢) Do d) all
Q4. How many types of cursors are there.
a)2 b)4
c)5 d)1
Q5. The work of % FOUND attribute is just opposite to.
a) %CURSOR b) % NOT COUNT

¢) %NOT FOUND d) % FOUND COUNT

Very Short answer type questions.

QI1. What is PL/SQL

Q2. How many parts are there in PL/SQL block.
Q3. Why we use Declare in PL/SQL.

Q4. What is the use of & in PL/SQL.

Q5. Where we declare Variables in PL/SQL
Q6. How select statement is used in PL/SQL
Q7. What is the use of exception block.

Q8. Give types of variable in PL/SQL.

Q9. What is trigger.

Q10. How we use triggers.

Short answer type questions:

Q1. Differentiate between %TYPE and %ROWTYPE
Q2. What is the use of EXIT statement in PL/SQL.

Q3. What is before trigger.

Q4. Differentiate between implicit and explicit cursor
Q5. Write syntax of for Loop.

Essay type questions:

Q1. What is cursor? What is the use of cursor? Explain explicit cursor with
example.

Q2. Explain different types of database triggers with example.

Q3. What is exception? Explain different types of exceptions.

Q4. Explain different types of loop in PL/SQL.

Q5. What is function? How it is different from Procedure? Explain syntax for
functions and procedure.

Answers key for objective questions

Ql:c Q2:b Q3:b Q4:a Q5:c

(233)

